Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 12, 2014

Mechanical properties of polyvinyl alcohol sponge under different strain rates

  • Alireza Karimi , Mahdi Navidbakhsh and Hossein Yousefi

Abstract

Polyvinyl alcohol (PVA) is a suitable material for biomedical and pharmaceutical applications. This paper presents a scientific study on the stiffness, strength, and energy absorption characteristics of a fabricated PVA sponge under different strain rates with a view to using it as an alternative biodegradable and biocompatible material. A range of tensile tests, such as stress failure and cyclic, on PVA sponge have been carried out. The stress–strain curves in all strain rates (1, 20, 100 mm min−1) indicated a near constant plateau stress over a long strain range, which is ideal for energy absorption applications. It was found that the PVA sponge biomaterial exhibited remarkable stiffness, strength, and energy absorption capacities that are comparable to those of some biomaterials with the same density range. PVA sponge can also bear suitable stress both at low and high strain rates which enables it to be implemented in most tissue engineering scaffolds.


* Correspondence address, Mahdi Navidbakhsh, School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16844, Iran, Tel: +98 21 77240540, Fax: +98 21 77240541, E-mail:

References

[1] Y.Liu, L.M.Geever, J.E.Kennedy, C.L.Higginbotham, P.A.Cahill, G.B.McGuinness: J. Mech. Behav. Biomed. Mater.3 (2010) 203. 10.1016/j.jmbbm.2009.07.001Search in Google Scholar

[2] S.Jiang, S.Liu, W.Feng: J. Mech. Behav. Biomed. Mater.4 (2011) 1228. 10.1016/j.jmbbm.2011.04.005Search in Google Scholar

[3] H.Jiang, G.Campbell, D.Boughner, W.-K.Wan, M.Quantz: Med. Eng. Phys.26 (2004) 269. 10.1016/j.medengphy.2003.10.007Search in Google Scholar

[4] J.A.Stammen, S.Williams, D.N.Ku, R.E.Guldberg: Biomaterials22 (2001) 799. 10.1016/S0142-9612(00)00242-8Search in Google Scholar

[5] D.Zhang, K.Chen, L.Wu, D.Wang, S.Ge: J. Bionic. Eng.9 (2012) 234. 10.1016/S1672-6529(11)60100-5Search in Google Scholar

[6] C.-T.Lee, P.-H.Kung, Y.-D.Lee: Carbohyd. Polym.61 (2005) 348. 10.1016/j.carbpol.2005.06.018Search in Google Scholar

[7] L.Setiawan, R.Wang, K.Li, A.G.Fane: J. Membr. Sci.394–395 (2012) 80.Search in Google Scholar

[8] S.-Y.Lee, B.P.Pereira, N.Yusof, L.Selvaratnam, Z.Yu, A.A.Abbas, T.Kamarul: Acta. Biomater.5 (2009) 1919. 10.1016/j.actbio.2009.02.014Search in Google Scholar PubMed

[9] L.Liu, C.Zhao, F.Yang: Water. Res.46 (2012) 1969. 10.1016/j.watres.2011.11.047Search in Google Scholar PubMed

[10] S.Moscato, L.Mattii, D.D’Alessandro, M.G.Cascone, L.Lazzeri, L.P.Serino, A.Dolfi, N.Bernardini: Micron39 (2008) 569. 10.1016/j.micron.2007.06.016Search in Google Scholar PubMed

[11] J.M.Davidson: Arch. Dermatol. Res.290 (1998) 1. 10.1007/PL00007448Search in Google Scholar PubMed

[12] D.T.Efron, A.Barbul: Methods Mol. Med.78 (2003) 83.Search in Google Scholar

[13] W.Korteweg, G.P.Korteweg, in: Patent No.: US 6711879B2, Ultracell Medical Technologies of Connecticut, Inc., North Stonington, CT, U.S.A. (2004).Search in Google Scholar

[14] A.Karimi, M.Navidbakhsh: Materials Technology: Advanced Performance Materials, In press (2013). 10.1179/1753555713Y.0000000115Search in Google Scholar

[15] A.Karimi, M.Navidbakhsh, S.Faghihi: Perfusion, In press (2013). 10.1177/0267659113513823.Search in Google Scholar

[16] A.Karimi, M.Navidbakhsh, S.Faghihi: J. Biomater. Tissue. Eng.4 (2014) 1. 10.1166/jbt.2014.1134Search in Google Scholar

[17] A.Karimi, M.Navidbakhsh, S.Faghihi, A.Shojaei, K.Hassani: Proc. IMechE Part H: J. Engineering in Medicine227 (2013) 148. 10.1177/0954409712465709Search in Google Scholar

[18] A.Karimi, M.Navidbakhsh, A.M.Haghi, S.Faghihi: Proc. IMechE Part H: J. Engineering in Medicine. 227 (2013) 609. 10.1177/0954406212463501Search in Google Scholar

[19] A.Karimi, M.Navidbakhsh, A.Shojaei, S.Faghihi: Mater. Sci. Eng. C33 (2013) 2550. 10.1016/j.msec.2013.01.045Search in Google Scholar PubMed

[20] A.Karimi, M.Navidbakhsh, S.Faghihi: Perfusion, In press (2013). 10.1177/0267659113502835.Search in Google Scholar

[21] A.Karimi, M.Navidbakhsh, B.Beigzadeh, S.Faghihi: Int. J. Damage. Mech., In press (2013). 10.1177/1056789513514072.Search in Google Scholar

[22] A.Karimi, M.Navidbakhsh, A.Shojaei, K.Hassani, S.Faghihi: Biomed. Eng: App. Basis. Comm.26 (2013) 145.Search in Google Scholar

[23] A.Karimi, M.Navidbakhsh, B.Beigzadeh: Tissue Cell, In press (2014). 10.1016/j.tice.2013.12.004.Search in Google Scholar

[24] A.Karimi, M.Navidbakhsh: J. Appl. Polym. Sci., In press (2014). 10.1002/APP.40257.Search in Google Scholar

[25] K.Miller, K.Chinzei: J. Biomech.35 (2002) 483. 10.1016/S0021-9290(01)00234-2Search in Google Scholar

[26] A.Karimi, M.Navidbakhsh: J. Thermoplast. Compos. Mater.: In press (2014). 10.1177/0892705713520176.Search in Google Scholar

[27] R.Faturechi, A.Karimi, A.Hashemi, M.Navidbakhsh: J. Biomater. Tissue Eng.4 (2014) 25. 10.1166/jbt.2014.1156.Search in Google Scholar

[28] M.Johnson, S.L.Walter, B.D.Flinn, G.Mayer: Acta Biomater.6 (2010) 2181. 10.1016/j.actbio.2009.12.006Search in Google Scholar PubMed

[29] A.Sionkowska, A.Płanecka: J. Mol. Liq.178 (2013) 5. 10.1016/j.molliq.2012.10.042Search in Google Scholar

[30] P.H.Corkhill, A.S.Trevett, B.J.Tighe: Proc. IMechE Part H: J. Engineering in Medicine204 (1990) 147. 10.1243/PIME_PROC_1990_204_149_02Search in Google Scholar

[31] S.J.Chang, Y.-T.Huang, S.-C.Yang, S.-M.Kuo, M.-W.Lee: Carbohyd. Polym.88 (2012) 684. 10.1016/j.carbpol.2012.01.001Search in Google Scholar

[32] M.F.Ashby, A.G.Evans, N.A.Fleck, L.J.Gibson, J.W.Hutchinson, H.N.G.Wadley, in: Metal Foams: A Design Guide, Butterworth-Heinemann, Warrendale (2000).Search in Google Scholar

[33] J.Shen, Y.Min Xie, X.Huang, S.Zhou, D.Ruan: J. Mech. Behav. Biomed. Mater.15 (2012) 141. 10.1016/j.jmbbm.2012.07.004Search in Google Scholar PubMed

[34] L.J.Gibson, M.F.Ashby, B.A.Harley: Cellular Materials in Nature and Medicine, Cambridge University Press, Cambridge (2010). 10.1038/nature09587Search in Google Scholar PubMed PubMed Central

[35] G.Lu, T.X.Yu: Energy Absorption of Structures and Materials, Woodhead Publishing Ltd, Cambridge (2003). 10.1201/9780203484128Search in Google Scholar

[36] L.J.Bonderer, A.R.Studart, L.J.Gauckler: Science319 (2008) 1069. 10.1126/science.1148726Search in Google Scholar PubMed

[37] Z.Zhang, Y.W.Zhang, H.Gao: Proc. R. Soc. B278 (2011) 519. 10.1098/rspb.2010.1093Search in Google Scholar PubMed PubMed Central

[38] J.Cadman, C.-C.Chang, J.Chen, Y.Chen, S.Zhou, W.Li, Q.Li: Mater. Sci. Eng. C33 (2013) 3146. 10.1016/j.msec.2013.03.031Search in Google Scholar PubMed

[39] S.Arabnejad, D.Pasini: Int. J. Mech. Sci.77 (2013) 249. 10.1016/j.ijmecsci.2013.10.003Search in Google Scholar

Received: 2013-10-10
Accepted: 2013-11-20
Published Online: 2014-04-12
Published in Print: 2014-04-14

© 2014, Carl Hanser Verlag, München

Downloaded on 2.6.2024 from https://www.degruyter.com/document/doi/10.3139/146.111036/html
Scroll to top button