Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 30, 2013

Formation mechanism of manganese vanadate microtubes and their electrochemical sensing properties

  • L. Z. Pei , Y. Q. Pei , Y. K. Xie , C. G. Fan and Q. F. Zhang

Abstract

Manganese vanadate microtubes have been synthesized via a simple hydrothermal process using polyvinyl pyrrolidone as the surfactant. Scanning electron microscopy observation shows that polyvinyl pyrrolidone plays an essential role in the formation and phase transformation of the manganese vanadate microtubes. A polyvinyl pyrrolidone-assisted “Ostwald ripening” growth mechanism has been proposed to explain the formation process of the manganese vanadate microtubes. The electrochemical behavior of L-cysteine at the manganese vanadate microtube modified glassy carbon electrode has been analyzed. The manganese vanadate microtube modified glassy carbon electrode exhibits the performance for the electrochemical determination of L-cysteine with a detection limit of 9.2 μM and linear range of 0.01 – 2 mM.


* Correspondence address, L. Z. Pei, School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, P. R. China, Tel.: +86555 2311570, Fax: +86555 2311570, E-mail:

References

[1] E.Andrukaitis: J. Power Sources68 (1997) 652. 10.1016/S0378-7753(96)02572-4Search in Google Scholar

[2] T.Nakajima, M.Isobe, T.Tsuchiya, Y.Ueda, T.Manabe: Opt. Mater.32 (2010) 1618. 10.1016/j.optmat.2010.05.021Search in Google Scholar

[3] Y.Sakurai, H.Ohtsuka, J.I.Yamaki: J. Electrochem. Soc.135 (1988) 32. 10.1149/1.2095582Search in Google Scholar

[4] Y.Takeda, K.Itoh, R.Kanno, T.Icikawa, N.Imanishi, O.Yamamoto: J. Electrochem. Soc.138 (1991) 2566. 10.1149/1.2085588Search in Google Scholar

[5] E.Andrukaitis, G.L.Torlone, I.R.Hill: J. Power Sources81–82 (1999) 651. 10.1016/S0378-7753(99)00094-4Search in Google Scholar

[6] L.Tan, H.W.Liu: Inorg. Mater.46 (2010) 201. 10.1134/S0020168510020202Search in Google Scholar

[7] F.Leroux, Y.Piffard, G.Ourvard, J.L.Mansot, D.Guyomard: Chem. Mater.11 (1999) 2948. 10.1021/cm991074gSearch in Google Scholar

[8] J.H.Liao, T.Drezen, F.Leroux, D.Guyomard, Y.Piffard: Eur. J. Solid State Inorg. Chem.33 (1996) 411.Search in Google Scholar

[9] Y.Piffard, F.Leroux, D.Guyomard, J.L.Mansot, M.Tournoux: J. Power Sources68 (1997) 698. 10.1016/S0378-7753(96)02576-1Search in Google Scholar

[10] S.S.Kim, H.Ikuta, M.Wakihara: Solid State Ionics139 (2001) 57. 10.1016/S0167-2738(00)00816-XSearch in Google Scholar

[11] M.Inagaki, T.Morishita, M.Hirano, V.Gupta, T.Nakajima: Solid State Ionics156 (2003) 275. 10.1016/S0167-2738(02)00679-3Search in Google Scholar

[12] T.Morishita, H.Konno, Y.Izumi, M.Inagaki: Solid State Ionics177 (2006) 1347. 10.1016/j.ssi.2006.05.035Search in Google Scholar

[13] T.Morishita, K.Nomura, T.Inamasu, M.Inagaki: Solid State Ionics176 (2005) 2235. 10.1016/j.ssi.2005.06.013Search in Google Scholar

[14] Y.Liu, Y.T.Qian: Front. Chem. China3 (2008) 467. 10.1007/s11458-008-0061-9Search in Google Scholar

[15] Y.Liu, Y.T.Qian: Front. Chem. China3 (2008) 275. 10.1007/s11458-008-0060-xSearch in Google Scholar

[16] L.Z.Pei, Y.Q.Pei, Y.K.Xie, C.Z.Yuan, D.K.Li, Q.F.Zhang: Mater. Res. in press (2012). 10.1557/jmr.2012.254Search in Google Scholar

[17] E.Baudrin, S.Laruelle, S.Denis, M.Touboul, J.M.Tarascon: Solid State Ionics123 (1999) 139. 10.1016/S0167-2738(99)00096-XSearch in Google Scholar

[18] D.Hara, H.Ikuta, Y.Uchimoto, M.Wakihara: J. Mater. Chem.12 (2002) 2507. 10.1039/b201966cSearch in Google Scholar

[19] N.Spataru, B.V.Sarada, E.Papa, D.A.Tryk, A.Fujishima: Anal. Chem.73 (2001) 514. PMid: 11217755; 10.1021/ac000220vSearch in Google Scholar

[20] S.A.Wring, J.P.Hart, B.J.Birch: Analyst114 (1989) 1563. 10.1039/an9891401563Search in Google Scholar

[21] J.Kulys, A.Drungiliene: Anal. Chim. Acta243 (1991) 287. 10.1016/S0003-2670(00)82572-6Search in Google Scholar

[22] P.C.White, N.S.Lawrence, J.Davis, R.G.Compton: Anal. Chim. Acta447 (2001) 1. 10.1016/S0003-2670(01)01297-1Search in Google Scholar

[23] L.Z.Pei, L.J.Yang, Y.Yang, C.Z.Yuan, C.G.Fan, Q.F.Zhang: Mater. Chem. Phys.130 (2011) 104. 10.1016/j.matchemphys.2011.06.002Search in Google Scholar

[24] L.Z.Pei, Y.Yang, L.J.Yang, C.G.Fan, C.Z.Yuan, Q.F.Zhang: Solid State Commun.151 (2011) 1036. 10.1016/j.ssc.2011.04.017Search in Google Scholar

[25] N.Wang, J.Ding, G.C.Li, H.R.Peng: Cryst. Res. Technol.45 (2010) 316. 10.1002/crat.200900501Search in Google Scholar

[26] L.Z.Pei, Y.Yang, C.G.Fan, C.Z.Yuan, T.K.Duan, Q.F.Zhang: Cryst. Eng. Comm.13 (2011) 4658. 10.1039/c1ce05070bSearch in Google Scholar

[27] L.Z.Pei, Y.Yang, C.Z.Yuan, T.K.Duan, Q.F.Zhang: Mater. Charact.62 (2011) 555. 10.1016/j.matchar.2011.01.001Search in Google Scholar

[28] D.S.Zheng, S.S.Sun, W.L.Fan, H.Y.Yu, C.H.Fan, G.X.Cao, Z.L.Yin, X.Y.Song: J. Phys. Chem. B109 (2005) 16439. 10.1021/jp0456234Search in Google Scholar PubMed

[29] Y.D.Yin, Y.Lu, Y.G.Sun, Y.N.Xia: Nano Lett.2 (2002) 427. 10.1021/nl025508Search in Google Scholar

[30] J.W.Wang, X.Wang, Q.Peng, Y.D.Li: Inorg. Chem.43 (2004) 7552. PMid: 15530107; 10.1021/ic030085fSearch in Google Scholar PubMed

[31] S.H.Tolbert, C.C.Landry, G.D.Stucky, B.F.Chmelka, P.Norby, J.C.Hanson, A.Monnier: Chem. Mater.13 (2001) 2247. 10.1021/cm0003727Search in Google Scholar

[32] D.H.Chen, Z.Li, Y.Wan, X.J.Tu, Y.F.Shi, Z.X.Chen, W.Shen, C.Z.Yu, B.Tu, D.Y.Zhao: J. Mater. Chem.16 (2006) 1511. 10.1039/b517975kSearch in Google Scholar

[33] V.Singh, P.K.Sharma, P.Chauhan: Mater. Chem. Phys.121 (2010) 202. 10.1016/j.matchemphys.2010.01.019Search in Google Scholar

[34] Y.Zou, D.S.Li, D.R.Yang: Nanoscale Res. Lett.6 (2011) 374. 10.1186/1556-276X-6-374Search in Google Scholar

[35] B.Mayers, Y.Xia: Adv. Mater.14 (2002) 279. 10.1002/1521-4095(20020219)14:4<279::AID-ADMA279>3.0.CO;2-2Search in Google Scholar

[36] Y.R.Ma, L.M.Qi, J.M.Ma, H.M.Cheng: Adv. Mater.16 (2004) 1023. 10.1002/adma.200305830Search in Google Scholar

[37] X.Peng: Adv. Mater.15 (2003) 459. 10.1002/adma.200390107Search in Google Scholar

[38] S.M.Lee, S.N.Cho, J.Cheon: Adv. Mater.15 (2003) 441. 10.1002/adma.200304588Search in Google Scholar

[39] L.Guo, C.Liu, R.Wang, H.Xu, Z.Wu, S.Yang: J. Am. Chem. Soc.126 (2004) 4530. 10.1021/ja037604ySearch in Google Scholar

[40] L.J.Li, R.J.Nicholas, C.Y.Chen, R.C.Darton, S.C.Baker: Nanotechnology16 (2005) S202. 10.1088/0957-4484/16/1/007Search in Google Scholar

[41] V.M.Burlakov: Phys. Rev. Lett.97 (2006) 155703. PMid: 17155338; 10.1103/PhysRevLett.97.155703Search in Google Scholar

[42] W.C.Zhu, S.L.Zhu, L.Xiang: Cryst. Eng. Comm.11 (2009) 1910. 10.1039/b804956dSearch in Google Scholar

[43] I.Sapurina, J.Stejskal: Chem. Pap.63 (2009) 579. 10.2478/s11696-009-0061-3Search in Google Scholar

[44] Y.Z.Fu, R.Yuan, D.P.Tang, Y.Q.Chai, L.Xu: Colloids Surf. B40 (2005) 61. PMid: 15620841; 10.1016/j.colsurfb.2004.10.022Search in Google Scholar PubMed

[45] Y.P.Dong, L.Z.Pei, X.F.Chu, W.B.Zhang, Q.F.Zhang: Electrochim. Acta55 (2010) 5135. 10.1016/j.electacta.2009.11.042Search in Google Scholar

[46] P.Dharmapandian, S.Rajesh, S.Rajasingh, A.Rajendran, C.Karunakaran: Sensor Actuat. B148 (2010) 17. 10.1016/j.snb.2010.04.023Search in Google Scholar

[47] Z.Chen, H.Zheng, C.Lu, Y.Zu: Langmuir23 (2007) 10816. 10.1021/la062210gSearch in Google Scholar PubMed

[48] S.M.Chen, J.Y.Chen, R.Thangamuthu: Electroanalysis20 (2008) 1565. 10.1002/elan.200704036Search in Google Scholar

[49] A.Salimi, R.Hallaj: Talanta66 (2005) 967. PMid: 18970079; 10.1016/j.talanta.2004.12.040Search in Google Scholar PubMed

Received: 2012-11-11
Accepted: 2013-7-9
Published Online: 2013-11-30
Published in Print: 2013-12-12

© 2013, Carl Hanser Verlag, München

Downloaded on 5.6.2024 from https://www.degruyter.com/document/doi/10.3139/146.110978/html
Scroll to top button