Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 8, 2018

Experimental investigation on the distribution of spray water in a spent fuel-assembly simulator

Experimentelle Untersuchungen zur Verteilung des Wassers während des Sprühens in einem Simulator für abgebrannte Brennelemente
  • Sh. Gao , D. G. Lu , H. Wang , Q. Cao and Y. D. Han
From the journal Kerntechnik

Abstract

The spent fuel pool cooling system in a nuclear power plant, which is comprised mainly by the cooling pumps and heat exchangers, ensures the safety of the spent fuel assemblies and the integrity of the fuel rods during the period of storage. With the development of the passive cooling technique, a spray cooling system for the spent fuels based on the gravity was designed to further enhance the safety of the spent fuel pool in case of accident conditions. This paper presents an experimental investigation of the validity of the spray-cooling system using two types of tight rod bundles, namely a 5 × 5 heated rod bundle and a 17 × 17 isothermal rod bundle. Results shows that the rod bundle heated with a lower power can be effectively cooled only by air without any spray water. With the increase of the heated power, the rod surface temperature increases gradually and the spray cooling has to be implemented to maintain the wall temperature at a certain level. The effect of flow rate on wall temperature was investigated. For the isothermal rod bundle, main interests were focused on the distribution of the spray water after it flowed along the rods.

Kurzfassung

Das Kühlsystem in einem Brennelementlagerbecken eines Kernkraftwerks, das hauptsächlich aus Kühlpumpen und Wärmetauschern besteht, gewährleistet die Sicherheit der abgebrannten Brennelemente und die Unversehrtheit der Brennstäbe während der Lagerung. Mit der Entwicklung der passiven Kühltechnik wurde ein auf der Schwerkraft basierendes Sprühkühlsystem für die abgebrannten Brennelemente entwickelt, das die Sicherheit des Brennelementlagerbeckens bei Unfällen weiter erhöhen soll. In diesem Beitrag wird eine experimentelle Untersuchung dieses Sprühkühlsystems für zwei Arten von dicht gepackten Brennelementbündeln, nämlich einem 5 × 5 beheizten Stabbündel und einem 17 × 17 isothermen Stabbündel, vorgestellt. Die Ergebnisse zeigen, dass das mit geringerer Leistung beheizte Stabbündel nur durch Luft und ohne Spritzwasser effektiv gekühlt werden kann. Mit der Erhöhung der Heizleistung steigt die Staboberflächentemperatur allmählich an und die Sprühkühlung muss durchgeführt werden, um die Wandtemperatur auf einem bestimmten Niveau zu halten. Die Auswirkungen der Strömungsgeschwindigkeit auf die Wandtemperatur wurden untersucht. Beim isothermen Stabbündel lag das Hauptinteresse auf der Verteilung des Sprühwassers, nachdem es entlang der Stäbe nach unten fließt.


* E-mail:

References

1 Jaeckel, B. S.: Status of the spent fuel in the reactor buildings of Fukushima Daiichi 1–4. Nuclear Engineering and Design283 (2015) 2710.1016/j.nucengdes.2014.07.007Search in Google Scholar

2 Ahn, K.-I.; Shin, J.-U.; Kim, W.-T.: Severe accident analysis of plant-specific spent fuel pool to support a SFP risk and accident management. Annals of Nuclear Energy89 (2016) 708310.1016/j.anucene.2015.11.024Search in Google Scholar

3 Shanshan, L.; Songlin, L.: Design requirements and program of condition monitoring for spent fuel pool in nuclear power plant. TECHNOLOGICAL PIONEERS04 (2014) 187188Search in Google Scholar

4 Ye, C.; Zheng, M. G.: The design and simulation of a new spent fuel pool passive cooling system. Annals of Nuclear Energy58 (2013) 12413110.1016/j.anucene.2013.03.007Search in Google Scholar

5 Zhenqin, X.; Minglu, W.: Experimental study on heat pipe heat removal capacity for passive cooling of spent fuel pool. Annals of Nuclear Energy83 (2015) 25826310.1016/j.anucene.2015.03.045Search in Google Scholar

6 Pigott, D. G.; White, E. P.: Wetting Delay due to film and transition boiling on hot surfaces. Nuclear Engineering and Design36 (1976) 16918110.1016/0029-5493(76)90003-0Search in Google Scholar

7 Monde, M.: Critical Heat Flux in Saturated Forced Convection Boiling on a Heated Disk With an Impinging Jet. Transactions of the ASME109 (1987) 99199610.1115/1.3248215Search in Google Scholar

8 Xia, S.: Pressurized Water Reactor Nuclear Power Plant Spent Fuel Pool Spray System Design. Value Engineering17 (2013) 4849Search in Google Scholar

9 Zhongwei, Zh.; Guoxing, L.: Safety Analysis of Loss of Cooling Accident for Typical Spent Fuel Pool. Nuclear Power Engineering36 (2015) 149153Search in Google Scholar

10 NB/T20056. Calculation of the decay heat of the nuclear fuel in a light water reactor. China: National Energy Administration, 2011Search in Google Scholar

11 US NR. “Standard Review Plan for Dry Cask Storage Systems”, NUREG-1536(1997)Search in Google Scholar

Received: 2017-12-30
Published Online: 2018-06-08
Published in Print: 2018-06-18

© 2018, Carl Hanser Verlag, München

Downloaded on 26.5.2024 from https://www.degruyter.com/document/doi/10.3139/124.110879/html
Scroll to top button