Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 26, 2018

Abnormal control rod withdrawal analysis for innovative research reactor using PARET-ANL codes

Analyse des unbeabsichtigten Kontrollstabauswurfs für innovativen Forschungsreaktor mit PARET-ANL-Codes
  • E. P. Hastuti , S. Tukiran , S. Widodo and Sudarmono
From the journal Kerntechnik

Abstract

Innovative Research Reactor 50 MW (RRI-50) is a conceptual design of an Indonesia's high-power innovative research reactor, which is designed to produce a maximum neutron flux as high as 1.0 × 1015 n/cm2 s and thermal neutron flux of 5.0 × 1014 n/cm2 s. In this study, the design basis accident slow reactivity insertion is carried out. Reactivity insertion accident (RIA) caused by the inadvertent withdrawal of all fuel rod at normal rate is simulated by using PARET-ANL transient code. In the simulation accident is assumed to occur when the reactor is in operation at high power and at low power level. During transient, the fuel rods are assumed to be in the most effective positions with insertion rate of 0.049 $/s. This reactivity worth will give effect only if the fuel rod interlock system is failed to function properly and the operator action does not follow the standard operation procedure. The analysis results show that the reactor experiences scram when it reaches its protected power at high power level of 110 % (55 MW) at period of 5 s and at low power level of 3 MW at period of 120 s, and there is sufficient safety margin for the anticipated RIA caused by reactivity feedback.

Kurzfassung

Der Forschungsreaktor 50 MW (RRI-50) ist ein Konzeptentwurf für einen innovativen indonesischen Hochleistungs-Forschungsreaktor, der darauf ausgelegt ist, einen maximalen Neutronenfluss von bis zu 1,0 × 1 015 n/cm2 s und einen thermischen Neutronenfluss von 5,0 × 1 014 n/cm2 s zu erzeugen. In dieser Studie wird eine Analyse des Auslegungsstörfalls unbeabsichtigten Kontrollstabauswurfs mit Hilfe des PARET-ANL-Transientencodes durchgeführt. In der Simulation wird davon ausgegangen, dass dieses Ereignis auftreten kann, wenn der Reaktor mit hoher Leistung und mit niedriger Leistung in Betrieb ist. Während der Transientenphase wird angenommen, dass sich die Brennstäbe in den effektivsten Positionen mit einer Rate von 0,049 $/s befinden. Diese Reaktivität wirkt sich nur dann aus, wenn das Brennstabverriegelungssystem nicht ordnungsgemäß funktioniert und die Bedienung nicht dem normalen Betriebsablauf folgt. Die Analyseergebnisse zeigen, dass sich der Reaktor im Fall der einer hohen Leistung bei 110 % (55 MW) nach 5 Sekunden und im Fall der niedrigen Leistung von 3 MW nach 120 Sekunden abschaltet. In beiden Fällen ist durch die Rückkopplung der Reaktivität eine ausreichende Sicherheitsmarge vorhanden.


* E-mail:

References

1 Surbakti, T.; Pinem, S.; Sembiring, T. M.; et. al.: Neutronics Conceptual Design of the Innovative Research Reactor Core Using Uranium Molybdenum fuel. J. Nucl. Reactor Tech. Tri Dasa Mega14 (2012) 179191 (In Indonesian)Search in Google Scholar

2 Hastuti, E. P.; Subekti, M.; Dibyo, S.; et. al.: Thermalhydraulic Design and Cooling System Optimization of The High Power Inovative Research Reactor. J. Nucl. Reactor Tech. Tri Dasa Mega17 (2015) 127140 (In Indonesian) 10.17146/tdm.2015.17.3.2327Search in Google Scholar

3 International Atomic Energy Agency: Safety of Research Reactor. AEA SS No. NS-R-4, IAEA, Vienna (2005)Search in Google Scholar

4 Hu, B. X.; Wu, Y. W.; Tian, W. X.; et al.: Development of a Transient Thermal-Hydraulic Code for Analysis of China Demonstration Fast Reactor. Ann. Nucl. Energy55 (2013) 30231110.1016/j.anucene.2012.12.022Search in Google Scholar

5 Kazem, A.; Salman, Z.: A lumped parameter core dynamics model for MTR type research reactors under natural convection regime. Nucl. Energy56 (2013) 24325010.1016/j.anucene.2013.01.033Search in Google Scholar

6 Lashkari, A.; Khalafi, H.; Kazeminejad, H.; et al.: Experimental study of neutronic parameters in Tehran research reactor mixed-core. Prog. Nucl. Energy83 (2015) 39840510.1016/j.pnucene.2015.04.006Search in Google Scholar

7 Busquim e Silva, R.; Marques, A. L. F.; Cruz, J. J.; et al.: Reactivity estimation during a reactivity-initiated accident using the extended Kalman filter. Ann. Nucl. Energy (2015) 75376210.1016/j.anucene.2015.06.031Search in Google Scholar

8 Li, F.-Y.; Chen, Z.; Liu, Y.: Research on stability of a reactor with power reactivity feedback. Prog. Nucl. Energy67 (2013) 151710.1016/j.pnucene.2013.03.025Search in Google Scholar

9 Filliatre, P.; Jammes, C.; Barbot, L.; et al.: Experimental assessment of the kinetic parameters of the JSI TRIGA reactor. Ann. Nucl. Energy83 (2015) 23624510.1016/j.anucene.2015.03.054Search in Google Scholar

10 Nasir, R.; Mirza, S. M; Mirza, N.M.: Study of successive ramp reactivity insertions in typical pool-type research reactors. Prog. Nucl. Energy66 (2013) 11512310.1016/j.pnucene.2013.03.021Search in Google Scholar

11 Abhinav, D.; Takashi, H.; Mamoru, I.; et al.: Experimental stability maps for a two-phase natural circulation reactor with and without void-reactivity feedback effect. Nucl. Engineering and Design261 (2013) 18120010.1016/j.nucengdes.2013.03.037Search in Google Scholar

12 Vadi, R.; Sepanloo, K.: Reassessment of the generic assumptions applied to the conventional analysis of the reactivity insertion accident in the MTRs using a novel coupled code. Prog Nucl. Energy93 (2016) 9611510.1016/j.pnucene.2016.08.008Search in Google Scholar

13 Nasir, R.; Butt, M. K.; Mirza, S. K.; et al.: Effect of high density dispersion fuels on transient behavior of MTR type research reactor under multiple reactivity transients. Ann. Nucl. Energy85 (2015) 86987810.1016/j.anucene.2015.07.003Search in Google Scholar

14 Boulaich, Y.; Nacir, B.; El Bardouni, T.; et al.: Transient behavior during reactivity insertion in the Moroccan TRIGA Mark II reactor using the PARET/ANL code. Nucl. Engineering and Design284 (2015) 24725010.1016/j.nucengdes.2014.12.037Search in Google Scholar

15 Badrun, N. H.; Altaf, M. H.; Khan, M. J. H.; et al.: Thermal hydraulic transient study of 3 MW TRIGA Mark-II research reactor of Bangladesh using the EUREKA-2/RR code. Ann. Nucl. Energy41 (2012) 404710.1016/j.anucene.2011.11.016Search in Google Scholar

16 Imholte, D. D.; Aydogan, F.: Comparison of nuclear pulse reactor facilities with reactivity-initiated accident testing capability. Prog. Nucl. Energy91 (2016) 31032410.1016/j.pnucene.2016.05.012Search in Google Scholar

17 Hastowo, H.: Investigation on ATWS and Hypothetical Accidents for The Indonesian Multipurpose Research Reactor RSG-GAS. Ph.D. Thesis, Gadjah Mada University (1996) unpublished.Search in Google Scholar

18 Tukiran, S.; Pinem, S.; TagorM. S.; Suparlia, L.; Susilo, J.: Neutronics Conceptual Design of the Innovative Research Reactor Core Using Uranium Molybdenum fuel. Journal of Nuclear Reactor Technology Tri Dasa Mega3 (2012) 179191Search in Google Scholar

Received: 2017-09-04
Published Online: 2018-03-26
Published in Print: 2018-04-16

© 2018, Carl Hanser Verlag, München

Downloaded on 24.5.2024 from https://www.degruyter.com/document/doi/10.3139/124.110844/html
Scroll to top button