Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 2, 2015

Design and implementation progress of multi-purpose simulator for nuclear research reactor using LabVIEW

Ausgestaltung und Ausführungfortschritte eines Mehrzwecksimulators für Forschungsreaktoren unter Verwendung von LabVIEW
  • A. Arafa , H. I. Saleh and N. Ashoub
From the journal Kerntechnik

Abstract

This paper illustrates the neutronic and thermal hydraulic models that were implemented in the nuclear research reactor simulator based on LabVIEW. It also describes the system and transient analysis of the simulator that takes into consideration the temperature effects and poisoning. This simulator is designed to be a multi-purpose in which the operator could understand the effects of the input parameters on the reactor. A designer can study different solutions for virtual reactor accident scenarios. The main features of the simulator are the flexibility to design and maintain the interface and the ability to redesign and remodel the reactor core engine. The developed reactor simulator permits to acquire hands-on the experience of the physics and technology of nuclear reactors including reactivity control, thermodynamics, technology design and safety system design. This simulator can be easily customizable and upgradable and new opportunities for collaboration between academic groups could be conducted.

Kurzfassung

In diesem Beitrag werden die neutronischen und thermohydraulischen Modelle, die im LabVIEW-basierten Simulator für Forschungsreaktoren implementiert wurden, vorgestellt. Das System und die Transientenanalyse des Simulators werden beschrieben. Dieser Simulator ist so zweckmäßig gestaltet, so dass der Reaktor-Betriebspersonal die Wirkung der Inputparameter auf das Reaktorverhalten gut verstehen kann. Auf diese Weise können verschiedene Lösungen virtueller Reaktorstörfallszenarien untersucht werden. Ein Hauptmerkmal des Simulators sind die flexiblen Ausgestaltungsmöglichkeiten und Modellierungen des Reaktors. Der Simulator ermöglicht es, Physik und Technologie des Reaktors einschließlich Reaktivitätskontrolle, Thermodynamik, Ausgestaltung technischer und Sicherheits-relevanter Aspekte durch praktische Erfahrung zu verstehen. Der Simulator lässt sich leicht anpassen und aufrüsten und kann so zur Verbesserung der Zusammenarbeit zwischen akademischen Gruppen beitragen.

References

1 Commission, U.S.N.R., RELAP5/MOD3. 3 Code manual, 1–8, by Information Services Laboratory Inc. Nuclear Safety Analysis Division, NUREG/CR-5535/Rev, 2002Search in Google Scholar

2 Paulsen, M. P., et al. : RETRAN-3D: A Program for Transient Thermal-Hydraulic Analysis of Complex Fluid Flow Systems. User's Manual, NP-7450 (A), Revision, vol. 6, 2007. Available via web at http://www.epri.com/.Search in Google Scholar

3 Spore, J. W., et al. : TRAC-M/Fortran 90 (Version 3.0) Theory Manual. 2001. Division of Systems Analysis and Regulatory Effectiveness. Office of Nuclear Regulatory Research, US Nuclear Regulatory Commission. Available via web at http://www.nrc.gov/.Search in Google Scholar

4 Chan, S.; Ryan, J.: Windows NT Simulation Platforms. Lessons Learned. Simulators International XIV. Society for Computer Simulation International. 1997Search in Google Scholar

5 Po, L.-C. C.: Analysis of the rancho seco overcooling event using PCTRAN, the personal computer transient analyzer. Nuclear Science and Engineering98 (1988) 15416110.13182/NSE88-A28495Search in Google Scholar

6 Po, L.-C. C.: PC-based simulator PCTRAN for advanced nuclear power plants. In: Proceedings of the International Congress on Advances in Nuclear Power Plants-ICAPP'08, 2008Search in Google Scholar

7 Lab VIEW: National Instruments, 2015Search in Google Scholar

8 Jurčević, M.; Malarić, R.; Šala, A.: Web based platform for distance training on electrical measurements course. Measurement Science Review6 (2006) 3639Search in Google Scholar

9 White, J. R.: Resource for Nuclear Engineering Education. 2006. Available via web at http://nuclear101.com/.Search in Google Scholar

10 Kim, K. D.; Rizwan, U.: A web-based nuclear simulator using RELAP5 and LabVIEW. Nuclear Engineering and Design237 (2007) 118511941010.1016/j.nucengdes.2007.01.004Search in Google Scholar

11 Arafa, A.; Saleh, H. I.; Ashoub, N.: Development of an educational nuclear research reactor simulator. Kerntechnik79 (2014) 5185271010.3139/124.110446Search in Google Scholar

12 D'Auria, F; Bousbia-Salah, A.: Accident analysis in research reactors. In: Proceedings of the International Conference Nuclear Energy for New Europe, Portorož, Slovenia, Sept. 10–13, 2007, p. 20212029Search in Google Scholar

13 Anglart, H.: Nuclear Reactor Dynamics and Stability. KTH Royal Institute of Technology, 2011Search in Google Scholar

14 Cacuci, D. G.: Handbook of Nuclear Engineering: Vol. 1: Nuclear Engineering Fundamentals; Vol. 2: Reactor Design; Vol. 3: Reactor Analysis; Vol. 4: Reactors of Generations III and IV; Vol. 5: Fuel Cycles, Decommissioning, Waste Disposal and Safeguards. Springer Science & Business Media, 2010Search in Google Scholar

15 Lamarsh, J. R.; Baratta, A. J.: Introduction to nuclear engineering. Vol. 3, 2001, Prentice Hall Upper Saddle RiverSearch in Google Scholar

16 Gábor, A., et al. : Modeling and identification of a nuclear reactor with temperature effects and xenon poisoning. In: Industrial Electronics. IECON'09, 35th Annual Conference of IEEE, 2009 10.5414/ALP26095Search in Google Scholar

Received: 2015-03-18
Published Online: 2015-11-02
Published in Print: 2015-10-29

© 2015, Carl Hanser Verlag, München

Downloaded on 30.5.2024 from https://www.degruyter.com/document/doi/10.3139/124.110535/html
Scroll to top button