Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 9, 2013

Chemistry aspects of the source term formation for a severe accident in a CANDU type reactor

Chemische Aspekte der Quelltermbildung bei einem schweren Unfall in einem CANDU-Reaktor
  • A. Constantin and M. Constantin
From the journal Kerntechnik

Abstract

The progression of a severe accident in a CANDU type reactor is slow because the core is surrounded by a large quantity of heavy and light water which acts as a heat sink to remove the decay heat. Therefore, the source term formation is a complex and long process involving fission products transport and releasing in the fuel matrix, thermal hydraulics of the transport fluid in the primary heat system and containment, deposition and transport of fission products, chemistry including the interaction with the dousing system, structural materials and paints, etc. The source term is strongly dependent on initial conditions and accident type. The paper presents chemistry aspects for a severe accident in a CANDU type reactor, in terms of the retention in the primary heat system. After releasing from the fuel elements, the fission products suffer a multitude of phenomena before they are partly transferred into the containment region. The most important species involved in the deposition were identified. At the same time, the influence of the break position in the transfer fractions from the primary heat system to the containment was investigated.

Kurzfassung

Die Abfolge bei einem schweren Unfall in einem CANDU-Reaktor ist langsam, da der Kern mit großen Mengen leichten und schweren Wassers umgeben ist, das als Wärmesenke für die Zerfallswärme dient. Deshalb ist die Quelltermbildung ein komplexer und langwieriger Prozess der Transport und Freisetzung von Spaltprodukten, Thermohydraulik der Transportflüssigkeit im primären Wärmetransportsystem und im Containment, Deposition und Transport von Spaltprodukten, chemische Aspekte, einschließlich der Wechselwirkung mit dem Löschwassersystem, dem Strukturmaterial, den Anstrichen, usw. Der Quellterm ist stark abhängig von den Anfangsbedingungen und der Art des Unfalls. In der vorliegenden Arbeit werden chemische Aspekte bei einem schweren Unfall in einem CANDU-Reaktor dargestellt in Form der Retention im primären Wärmetransportsystem. Nach Freisetzung aus den Brennelementen durchlaufen die Spaltprodukte eine Reihe von Prozessen bis ein Teil ins Containment überführt wird. Die wichtigsten Phänomene bei der Deposition werden aufgezeigt. Gleichzeitig wurde der Einfluss der Bruchstelle in den Übertragungsanteilen vom primären Wärmetransportsystem zum Containment untersucht.


2 A. Constantin, E-mail:

References

1 Clement, B.et al.: LWR Severe Accident Simulation: Synthesis of the Results and Interpretation of the First PHEBUS FP Experiment FPT0. Nuclear Engineering and Design226 (2003) 5Search in Google Scholar

2 Andre, B.et al.: FP Releases at Severe Light Water Reactor Accident Conditions: ORNL/CEA Measurement Versus Calculations. Nuclear Technology114 (1996) 23Search in Google Scholar

3 Atkhen, K.; Berthoud, G.: Experimental and Numerical Investigations on Debris Bed Coolability in a Multidimensional and Homogeneous Configuration with Volumetric Heat Source. Nuclear Technology142 (2003) 3Search in Google Scholar

4 Allelein, H. J.; Neu, K.; Van Dorsellaere, J. P.: European Validation of the Integral Code ASTEC (EVITA) First Experience in Validation and Plant Sequence Calculation. Nuclear Engineering and Design235 (2005) 285Search in Google Scholar

5 Fauske & Associates, LLC: MAAP4 Modular Accident Analysis Program for LWR Power Plants User’s Manual, Project RP3131-02 (prepared for EPRI), May 1994-June 2005Search in Google Scholar

6 Gauntt, R. O.; Cole, R. K.et al.: MELCOR Computer Code Manuals, Version 1.8.5, NUREG/CR-6119, 2005Search in Google Scholar

7 Cousin, F.: ASTEC V2.0 – SOPHAEROS Module: Theoretical manual, Report ASTEC-V2/DOC/09Search in Google Scholar

8 Constantin, M.; Apostol, M.; Constantin, A.: Investigations of Source Term Formation for CANDU Type Reactors by using ASTEC Code, Euratom-FP7-SARNET2-4th Users’ Club Meeting, Koln, October, 2010Search in Google Scholar

9 Constantin, M.; Apostol, M.; Constantin, A.; Rizoiu, A.: Overview of ASTEC Use for CANDU Type Reactors, Euratom-FP7-SARNET2-5th Users’ Club Meeting, Aix en Provence, January-February, 2013Search in Google Scholar

10 Apostol, M.; Constantin, M.; Leca, A.: Uncertainty Analysis for Fission Products Transport in CANDU Primary Heat Transport during a Severe Accident. Kerntechnik75 (2010) 4Search in Google Scholar

11 Mathew, P. M.; White, A. J.; Snell, V. G.; Bonechi, M.: Severe Core Damage Accident Analyses and Experiments for CANDU Applications, Proceedings of 17th International Conference on Structural Mechanics in Reactor Technology, SMiRT 17, Prague, August 17-22, 2003Search in Google Scholar

12 Brown, M. J.; Petoukhov, S. M.; Mathew, P. M.: Influence of Coolant Phase Separation on Event Timing During a Severe Core Damage Accident in a Generic CANDU 6 Plant. Available on web: https://www.oecd-nea.org/nsd/…2…/Paper-23_Brown-et-al.pdfSearch in Google Scholar

13 Iglesias, F.; Kaye, M.; Lewis, B.: Estimate of Instant Release Fractions using ORIGEN-S and FEMAXI, NWMO TR-2011-19, Toronto, 2011Search in Google Scholar

14 Plumecocq, W.; Guillard, G.: ASTEC V1.3 – ELSA Module: Fission Product and Structural Element Release from Intact and Degraded Cores, Report ASTEC-V2/DOC/06-08Search in Google Scholar

Received: 2013-2-19
Published Online: 2013-09-09
Published in Print: 2013-06-28

© 2013, Carl Hanser Verlag, München

Downloaded on 15.5.2024 from https://www.degruyter.com/document/doi/10.3139/124.110342/html
Scroll to top button