Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 19, 2013

Preliminary evaluation of effect of Engineered Safety Features on source term for AHWR containment

Vorläufige Bewertung des Einflusses von aktiven Sicherheitsmerkmalen auf den Quellterm für das AHWR Containment
  • I. Thangamani , B. Gera , A. Dutta , V. Verma , R. K. Singh and A. K. Ghosh
From the journal Kerntechnik

Abstract

The proposed Advanced Heavy Water Reactor (AHWR) employs double containment envelope along with many Engineered Safety Features (ESFs) to mitigate the consequences of Loss-of-Coolant Accidents (LOCA) with safety system failure, during which high enthalpy steam and radioactive fission products will be discharged into the containment. In such conditions, the pressurized containment will be the source of activity release to the environment by way of leakage. It is required to study the effect of ESFs on the source term from the AHWR containment. An analysis was performed to evaluate the release rate from the AHWR containment during a postulated accident with the in-house containment code CONTRAN and the aerosol behavior code NAUA5-M in a coupled way. Modules for simulating the engineered safety features were incorporated in the CONTRAN code and the aerosol transport behaviour was evaluated using NAUA5-M separately. The AHWR containment is divided into three nodal volumes interconnected by junctions. The blow down mass, energy discharge data and activity released into the containment from the reactor core, for a postulated LOCA case of 200% RIH break with failure of shutdown systems (1 & 2), are inputs to the CONTRAN code. Thermodynamic parameters like containment gas temperature, partial pressure of steam, air in the subdivided volumes along with the flow rates through junctions obtained from CONTRAN were supplied to NAUA5-M. An analysis was carried out for a number of cases, postulated based on availability/unavailability of ESFs. Pressure, temperature and activity concentration transients were evaluated, for 72 h, in the subdivided volumes along with the activity released out of the containment through leakages and stack discharges for all the cases. This paper highlights the importance of operation of ESF in reducing the activity release to the environment.

Kurzfassung

Der vorgeschlagene fortgeschrittene Schwerwasserreaktor (AHWR) hat ein doppeltes Containment zusammen mit einer Reihe von aktiven Sicherheitsmerkmalen (ESFs) um so die Folgen von Kühlmittelverlustunfällen (LOCA) mit Ausfall des Sicherheitssystems zu begrenzen, bei denen radioaktive Spaltprodukte in das Containment freigesetzt werden. Unter solchen Umständen wird das unter Druck stehende Containment zur Quelle von Freisetzungen von Radioaktivität in die Umgebung. Es ist deshalb erforderlich den Einfluss der ESFs auf den Quellterm für den AHWR zu untersuchen. Es wurde eine Analyse durchgeführt um die Freisetzungsrate aus dem AHWR während eines angenommenen Unfalls zu bestimmen mit Hilfe des Containment Codes CONTRAN und des Codes NAUA5-M zum Aerosolverhalten. Module zur Simulation der ESFs wurden in den CONTRAN Code integriert und das Aerosoltransportverhalten wurde mit NAUA5-M separat bestimmt. Das AHWR Containment ist in drei nodale Volumen geteilt, die durch Anschlussstellen mit einander verbunden sind. Thermodynamische Parameter wie die Temperatur des Gases im Containment, der partielle Dampfdruck, die Luft in den unterteilten Volumen zusammen mit den Strömungsraten durch die Anschlussstellen wurden auf NAUA5-M angewendet. Eine Analyse wurde durchgeführt für eine Reihe von angenommenen Szenarien auf der Grundlage des Vorhandenseins oder Nicht-Vorhandenseins von aktiven Sicherheitsmerkmalen. Druck, Temperatur und Aktivitätskonzentrationstransienten wurden bestimmt für 72 h, in den unterteilten Volumen zusammen mit der aus dem Containment freigesetzten Aktivität für diese Fälle. Diese Arbeit betont die Wichtigkeit der ESF bei der Reduzierung der in die Umgebung freigesetzten Aktivität.


Anu Dutta, B. Tech in Chemical Engineering, Reactor Safety Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India. E-mail:

References

1 Sinha, R. K.; Kakodkar, A.: Design and development of the AHWR#151;the Indian thorium fuelled innovative nuclear reactor. Nucl. Eng. Des.236 (2006) 68370010.1016/j.nucengdes.2005.09.026Search in Google Scholar

2 Fischer, K.; Kanzleiter, T.: Experiments and computational models for aerosol behaviour in the containment. Nuclear Engineering and Design191 (1999) 536710.1016/S0029-5493(99)00052-7Search in Google Scholar

3 Porfiri, M. T.; Cambi, G.: Integrated safety analysis code system (ISAS) application for accident sequence analyses. Fusion Engineering and Design52 (2000) 58759110.1016/S0920-3796(00)00234-9Search in Google Scholar

4 Cambi, G.; Paci, S.; Parozzi, F.; Porfiri, M. T.: Ex-vessel break in ITER diverter cooling loop analysis with the ECART code. Fusion Engineering and Design69 (2003) 60160510.1016/S0920-3796(03)00159-5Search in Google Scholar

5 Ghosh, A.K.; Grover, R. B.: Analysis of vent clearing transient in a pressure suppression type containment system. BARC Report No. BARC/I-814, 1984, BARC, BombaySearch in Google Scholar

6 Design Manual on Reactor building volume V1 & V2 cooling system and insulation cabinet ventilation-process. Nuclear Power Corporation of India Limited, Mumbai, India, 1999, Kaiga Design Manual No. KAIGA-1&2/DM/73110&73120/120/R-0Search in Google Scholar

7 Design Manual on Reactor Building Primary Containment Controlled Depressurisation System. Nuclear Power Corporation of India Limited, Mumbai, India, RAPP-3&4-73140-2Search in Google Scholar

8 Design Manual on Reactor Building Primary Containment Filtration and Pump Back system. Nuclear Power Corporation of India Limited, Mumbai, India, Kaiga-1&2–73150Search in Google Scholar

9 Design Manual on Reactor Building Secondary Containment Ventilation, Filtration and Purge system. Nuclear Power Corporation of India Limited, Mumbai, India, Kaiga-1&2–73160Search in Google Scholar

10 Haware, S. K.; Ghosh, A. K.; Kushwaha, H. S.: Analytical studies on optimization of containment design pressure. Proceedings of the 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-11), Popes'apos; Palace Conference Centre, Avignon, France, October 2005, Paper: 482, pp. 110Search in Google Scholar

11 Haware, S. K.; Ghosh, A. K.; Venkat Raj, V.; Kakodkar, A.: Analysis of CSNI Benchmark test on containment using the code CONTRAN. Third International Conference on Containment Design and Operation, Vol-2, Oct 1994, Toronto, OntarioSearch in Google Scholar

12 Haware, S. K.; Markandeya, S. G.; Ghosh, A. K.; Venkat Raj, V.: Assessment of multi-compartment containment analysis computer code CONTRAN with the experiments on containment response during LOCA conditions. First ISHMT-ASME Heat and Mass Transfer Conference and 12th National Heat and Mass Transfer Conference, January 1994, BARC, Bombay, IndiaSearch in Google Scholar

13 Haware, S. K; Venkat Raj, V.: Experiments on one-tenth scale model of vapour suppression pool containment of 235MWe Indian PHWRs – Results of one of the tests simulating MAPS condition. 10th National Heat and Mass Transfer Conference, Aug 23–25, 1989, Srinagar, IndiaSearch in Google Scholar

14 Almenas, K.: Heat transfer from saturated and superheated atmospheres for containment analysis. Nucl. Eng. Des.71 (1982) 11410.1016/0029-5493(82)90164-9Search in Google Scholar

15 Bunz, H.; Kyoro, M.; Schoeck, W.: NAUA-4: A code for calculating aerosol behaviour in LWR core-melt accidents. KfK-3554 (1983), Kernforschungszentrum, KarlsruheSearch in Google Scholar

16 Bunz, H.; Kyoro, M.; Schoeck, W.: NAUA Mod 5 and Mod 5-M, Zwei Computerprogramme zur Berechung des Aerosolverhaltens im Containmentsystem eines LWR nach einem Kernschmelzunfall. KfK-4278 (1987), Kernforschungszentrum, KarlsruheSearch in Google Scholar

17 Schoeck, W. O.; Schikarski, W.: Behaviour and retention of fission products in containment. Kernforschungszentrum Karlsruhe GmbH, Karlsruhe, In: Proc. International Symposium on Source Term for Accident Conditions, Columbus, OH (1985)Search in Google Scholar

18 Haware, S. K.; Ghosh, A. K.; Venkat Raj, V.; Sharma, V. K.: Assessment of the computer code NAUA MOD 5 against a small-scale containment aerosol test. J. Aerosol Science28 (1997) 66367510.1016/S0021-8502(96)00465-XSearch in Google Scholar

Received: 2011-01-24
Published Online: 2013-04-19
Published in Print: 2011-11-01

© 2011, Carl Hanser Verlag, München

Downloaded on 28.5.2024 from https://www.degruyter.com/document/doi/10.3139/124.110163/html
Scroll to top button