Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 19, 2013

The development and assessment of TRACE model for Lungmen ABWR

Entwicklung und Anwendung eines TRACE Datensatzes für den Reaktor Lungmen (ABWR) in Taiwan
  • H.-T. Lin , J.-R. Wang and C. Shih
From the journal Kerntechnik

Abstract

For the nuclear power plant Lungmen (two blocks of Advanced Boiling Water Reactor (ABWR)) in Taiwan a plant model for the thermal hydraulic program TRACE (TRAC/RELAP Advanced Computational Engine) was developed. This model is and will be used for the simulation of normal and anomalous plant behaviour as well as for the simulation of incident scenarios. The presentation of this model is done in three steps: The first step is the development of a TRACE model of Lungmen nuclear power plant (NPP) which includes the vessel, the main steam lines and important control systems (such as the feedwater control system, recirculation flow control system, etc.). Key parameters were identified to refine the model further in the frame of a steady state analysis. The second step is the performance of TRACE transient analyses, such as MSIV closure direct scram (MSIVCD, MSIV = Main Steamline Isolation Valve) and loss of feedwater flow (LOFW). The above transient data of Final Safety Analysis Report (FSAR) are used to verify the Lungmen NPP TRACE model. The trends of their analysis results are roughly similar. It indicates that TRACE model is satisfying for the purpose of Lungmen NPP safety analyses. The third step is the prediction analysis of Lungmen NPP startup tests by using the TRACE model. The prediction analysis results of TRACE comply with the startup tests procedure criteria.

Kurzfassung

Für das in Bau befindliche Kernkraftwerk Lungmen (2 Blöcke des Typs Advanced Boiling Water Reactor (ABWR)) in Taiwan wurde für die Simulation des normalen sowie anomalen Betriebes sowie von Störfällen ein Anlagenmodell für das Thermohydraulikprogrammsystem TRACE (TRAC/RELAP Advanced computational Engine) erstellt, das in dem vorliegenden Beitrag im Detail beschrieben wird. Hierbei wird speziell auf die Nodalisierung des Reaktordruckbehälters sowie des Kühlsystems eingegangen. Mit dem Anlagenmodell konnten die Systemparameter im stationären Betrieb, die in der Regel den Anfangsbedingungen für die Simulation einer Transiente bzw. eines Kühlmittelverluststörfalls entsprechen, gut reproduziert werden. Anschließend werden die Ergebnisse der Simulation verschiedener Störfälle im Detail und an den diesbezüglichen Ausführungen des sog. Final Safety Analysis Report (FSAR) gespiegelt. Hierbei zeigt sich eine gute qualitative und weitgehend auch quantitative Übereinstimmung. Abschließend werden erste Vorausrechnungen ausgewählter Inbetriebnahmeversuche der Anlage vorgestellt.

References

1 Barten, W.; Jasiulevicius, A.; Manera, A.; Macian-Juan, R.; Zerkak, O.: Analysis of the capability of system codes to model cavitation water hammers: Simulation of UMSICHT water hammer experiments with TRACE and RELAP5. Nuclear Engineering and Design238 (2008) 11291145.10.1016/j.nucengdes.2007.10.004Search in Google Scholar

2 Xu, Y.; Downar, T.; Walls, R.; Ivanov, K.; Staudenmeier, J.; March-Lueba, J.: Application of TRACE/PARCS to BWR stability analysis Annals of Nuclear Energy36 (2009) 317323.10.1016/j.anucene.2008.12.022Search in Google Scholar

3 Gallardo, S.; Abella, V.; Verdú, G.: Assessment of TRACE5 against ROSA serie 3–1: Cold Leg SBLOCA Transient. The 13th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-13) Kanazawa City, Ishikawa Prefecture, Japan, September 27-October 2, 2009, N13P1407.Search in Google Scholar

4 Cheng, Y. H.; Shih, C.; Wang, J. R.; Lin, H. T.: Benchmark Calculations of Pressurizer Model for Maanshan Nuclear Power Plant using TRACE Code. Proceedings of the 16th International Conference on Nuclear Engineering (ICONE16), May 11–15, 2008, Orlando, Florida, USA, ICONE16-48603.Search in Google Scholar

5 Wang, J. R.; Lin, H. T.; Cheng, Y. H.; Wang, W. C.; Shih, C.: TRACE modeling and its verification using Maanshan PWR start-up tests. Annals of Nuclear Energy36 (2009) 527536.10.1016/j.anucene.2008.12.017Search in Google Scholar

6 Wang, J. R.; Lin, H. T.; Shih, C.: Assessment of the TRACE Code Using Transient Data from Maanshan PWR Nuclear Power Plant. NUREG report (2010) NUREG/IA-0241.Search in Google Scholar

7 Taiwan Power Company: Final Safety Analysis Report for Lungmen Nuclear Power Station Units 1 and 2 (FSAR), Chapter 15 (2007).Search in Google Scholar

8 Kao, L. S.; Wang, J. R.; YuannR.Y.; Tung, W. H.; Jing, J. A.; Lin, C. T.: Parallel calculations and verifications of limiting transient analyses for Lungmen nuclear power plant. INER report (2008) INER-A1609R, Institute of Nuclear Energy Research Atomic Energy Council, R. O. C.Search in Google Scholar

9 Kao, L. S.; Wang, J. R.; Tang, J. R.; Jing, J. A.; Tung, W. H.; Yuann, R. Y.; Lin, C. T.; Lin, H. T.: Development of Lungmen ABWR Thermal hydraulic Safety analysis Method-The Summary Report. INER report (2008) INER-A1742R, Institute of Nuclear Energy Research Atomic Energy Council, R. O. C.Search in Google Scholar

10 Taiwan Power Company: Lungmen Nuclear Power Station Startup Test Procedure- Feedwater Pump Trip, STP-27-HP (2008).Search in Google Scholar

11 Taiwan Power Company: Lungmen Nuclear Power Station Startup Test Procedure- One RIP Trip Test, STP-28A-HP (2008).Search in Google Scholar

12 Taiwan Power Company: Lungmen Nuclear Power Station Startup Test Procedure- Three RIPs Trip Test, STP-28B-HP (2008).Search in Google Scholar

13 Taiwan Power Company: Lungmen Nuclear Power Station Startup Test Procedure- Reactor Full Isolation, STP-32-HP (2008).Search in Google Scholar

Received: 2010-02-08
Published Online: 2013-04-19
Published in Print: 2011-07-01

© 2011, Carl Hanser Verlag, München

Downloaded on 13.6.2024 from https://www.degruyter.com/document/doi/10.3139/124.110153/html
Scroll to top button