Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 19, 2013

Development of the coupled 3D neutron kinetics/thermal-hydraulics code DYN3D-HTR for the simulation of transients in block-type HTGR

Entwicklung des 3D gekoppelten neutronkinetisch-thermohydraulischen Codes DYN3D-HTR zur Simulation von Transienten in HTGR vom Blocktyp
  • U. Rohde , S. Baier , S. Duerigen , E. Fridman , S. Kliem and B. Merk
From the journal Kerntechnik

Abstract

The Light Water Reactor (LWR) dynamics code DYN3D is extended and adopted for the application to block-type High Temperature Gas-Cooled Reactor (HTGR). A procedure for the cross section generation for the HTGR core calculations was developed. The modified Reactivity-Equivalent Physical Transformation (RPT) approach is applied in order to eliminate the double-heterogeneity of HTGR fuel elements in the deterministic lattice calculations. A full core analysis of the reference simplified HTGR core is performed with DYN3D using macroscopic nodal cross sections provided by HELIOS.

The SP3 transport approximation is integrated into the multi-group DYN3D code to take anisotropy of the neutron flux and heterogeneity of the core more precisely into account. The SP3 method was developed for hexagonal geometry of the graphite blocks, where the hexagons are subdivided into triangular nodes.

A 3D heat conduction module coupled with a channel-type coolant flow model is implemented into the code. It is shown that there is significant redistribution of the produced heat by heat conduction between the graphite blocks.

Kurzfassung

Das Leichtwasserreaktor-Dynamikprogramm DYN3D wurde für die Anwendung auf gasgekühlte Hochtemperaturreaktoren (HTGR) vom Blocktyp erweitert. Mit der modifizierten Reaktivitäts-äquivalenten Physikalischen Transformation (RPT) wurde eine Prozedur für die Generierung von effektiven Wirkungsquerschnitten für HTGR-Kerne entwickelt, die es erlaubt, die doppelte Heterogenität der HTGR-Brennelemente in den deterministischen Zellrechnungen zu eliminieren. Die Methodik wurde anhand einer DYN3D-Kernrechnung für ein vereinfachtes Referenzdesign eines HTGR erprobt, wobei die nodegemittelten Wirkungsquerschnitte mit dem Transportcode HELIOS erzeugt wurden.

In DYN3D wurde ein Transportansatz nach der SP3-Methode implementiert, der eine genauere Berechnung von Anisotropie- und Heterogenitätseffekten ermöglicht. Die SP3-Methode wurde für die hexagonale Geometrie der Grafitblöcke im HTGR-Kern abgeleitet, wobei die Hexagone in trigonale Nodes unterteilt werden.

In den Code wurde ein 3D Wärmeleitungsmodul integriert und mit dem vorhandenen Kanalmodell für die Kühlmittelströmung gekoppelt. In Testrechnungen wurde gezeigt, dass die räumliche Umverteilung der freigesetzten Wärme durch Wärmeleitung zwischen den Blöcken in radialer und axialer Richtung relevant ist.

References

1 Gen-IV International Forum: System Research Plan for the Very-High Temperature Reactor, Version 0. VHTR Provisional R & D Steering Committee 2006Search in Google Scholar

2 GerwinH.; SchererE.; TeuchertW.: The TINTE Modular Code System for Computational Simulation of Transient Processes in the Primary Circuit of a Pebble-bed High-Temperature Gas-Cooled Reactor. Nuclear Science and Engineering, (1989) 10310.13182/NSE89-A23682Search in Google Scholar

3 KasselmannS.; DruskaC.; LauerA.: Investigations of Safety-Related Parameters Applying a New Multi-group diffusion code for HTR Transients. Proc. Annual Meeting on nuclear technology, Berlin, Germany 2010Search in Google Scholar

4 ReitsmaaF.; HanJ.; IvanovK.; SartoriE.: The OECD/NEA/NSC PBMR400 MW coupled neutronics thermal hydraulics transient benchmark – Steady-state results and status. Proc. PHYSOR 2008, Interlaken, Switzerland, 2008 September 14–19Search in Google Scholar

5 KuijperJ.C.; et al.: HTR-N Reactor Physics and Fuel Cycle Studies. Proc. 2nd International Topical Meeting on High Temperature Reactor Technology, Beijing, China 2004Search in Google Scholar

6 MkhabelaP.; IvanovK.: DLOFC transient analysis for PBMR with NEM/THERMIX, Proc. PHYSOR 2008, Interlaken, Switzerland, 2008 September 14–19Search in Google Scholar

7 Struth, S.: Direkt – a computer programme for non-steady, two-dimensional simulation of thermo-hydraulic transients. Kernforschungsanlage Jülich, JÜL-1702 1999Search in Google Scholar

8 Rohde, U.; Baier, S.; Duerigen, S.; Fridman, E.; Merk, B.; Weiss, F.-P.: Development of the coupled 3D neutron kinetics/thermal-hydraulics code DYN3D-HTR for the simulation of transients in block-type HTGR. 5th Int. Topical Meeting in High Temperature Reactor Technology, 18.-20.10.2010, Prague, Czech Republic10.3139/124.110147Search in Google Scholar

9 GauthierJ.C.; BrinkmannG.; CopseyB.; LecomteM.: ANTARES – The HTR/VHTR project at Framatome ANP. Nuclear Engineering and Design (2006) 23610.1016/j.nucengdes.2005.10.030Search in Google Scholar

10 SiozawaS.; et al.: Overview of HTTR Design Features. Nuclear Engineering and Design (2004) 23310.1016/j.nucengdes.2004.07.016Search in Google Scholar

11 GrundmannU.; RohdeU.; MittagS.: DYN3D – three dimensional core model for steady-state and transient analysis of thermal reactors. Proc. PHYSOR 2000, Pittsburgh, Pennsylvania, USA 2000Search in Google Scholar

12 StammlerR.J.: HELIOS Methods, Studsvik Scandpower. 2003Search in Google Scholar

13 RhodesJ.; EdeniusM.: CASMO-4. A Fuel Assembly Burnup Program. User's Manual. Studsvik Scandpower SSP-01/400 Rev. 4 2004Search in Google Scholar

14 SanchezR.; et al.: APOLLO II: a user-oriented, portable, modular code for multigroup transport assembly calculations. Nuclear Science and Engineering (1988) 10010.13182/NSE88-3Search in Google Scholar

15 KimY.H.; ParkW.S.: Reactivity-Equivalent Physical Transformation for Elimination of Double-Heterogeneity. Transaction of American Nuclear Society (2005) 93Search in Google Scholar

16 NohJ.M.; KimK.S.; KimY.; LeeH.C.: Development of a computer code system for the analysis of prism and pebble type VHTR cores. Annals of Nuclear Energy (2008) 3510.1016/j.anucene.2008.03.011Search in Google Scholar

17 Fridman, E.; Merk, B.: Modification of the Reactivity Equivalent Physical Transformation Method for HTGR Fuel Element Analysis. 5th Int. Topical Meeting on High Temperature Reactor Technology, 18.-20. 10. 2010, Prague, Czech RepublicSearch in Google Scholar

18 MacDonaldP.E.; et al.: NGNP Preliminary Point Design – Results of the Initial Neutronics and Thermal-Hydraulic Assessments. INEEL/EXT-03-00870 Rev. 1. 200310.2172/910732Search in Google Scholar

19 DeHartM.; UlsesA.P.: Benchmark Specification for HTGR Fuel Element Depletion. NEA/NSC/DOC(2009)13 2009Search in Google Scholar

20 BriesmeisterJ. F. Ed.: MCNP – A General Monte Carlo N-Particle Code, Version 4C. Los Alamos National Laboratory, LA-13709-M 2000Search in Google Scholar

21 BeckertC.; GrundmannU.: Development and verification of a nodal approach for solving the multigroup SP3equations, Annals of Nuclear Energy (2008) 3510.1016/j.anucene.2007.05.014Search in Google Scholar

22 DuerigenS.; GrundmannU.; MittagS.; MerkB.; FridmanE.; KliemS.: A trigonal nodal solution approach to the multi-group simplified P3 equations in the reactor code DYN3D. Proc. M&C 2011, Rio de Janeiro, Brazil, May 8–12 2011Search in Google Scholar

23 KhalilH.S.: Generation IV Design & Evaluation Methods, Advanced Reactor, Fuel Cycle and Energy Products Workshop for Universities. Gaithersburg, March 20 2007Search in Google Scholar

24 KuijperJ.C.; de HaasJ. B. M.; OppeJ.: HTR Core Physics Analysis at NRG. Conference on HIGH TEMPERATURE REACTORS, Petten, NL, April 22–24 2002Search in Google Scholar

25 TyobekaaB.; PautzA.; IvanovK.: DORT-TD/THERMIX solutions for the OECD/NEA/NSC PBMR400MW coupled neutronics thermal hydraulics transient benchmark. Proc. PHYSOR 2008, Interlaken, Switzerland, September 14–19 2008Search in Google Scholar

26 HossainK.; et al.: Development of a fast 3D thermal-hydraulic tool for design and safety studies for HTRs. 3rdP Int. Topical Meeting on High Temperature Reactor Technology, October 1–4, Johannesburg, South Africa, paper #C196 2006Search in Google Scholar

27 Seubert, A.; Sureda, A.; Bader, J.; Lapins, J.; Buck, M.; Laurien, E.: The 3-D time-dependent transport code TORT-TD coupled with the 3-D thermal-hydraulic code ATTICA3D for HTGR applications. 5th Int. Topical Meeting on High Temperature Reactor Technology, 18.-20. 10. 2010, Prague, Czech Republic 2010Search in Google Scholar

28 Ortensi, J.; Ougouag, A. M.: Improved Prediction of the Temperature Feedback in TRISO-Fueled Reactors. Report INL/EXT-09-16494 200910.2172/966171Search in Google Scholar

29 ChoN.Z.; YuH.; KimJ.W.: Two-temperature homogenized model for steady state and transient thermal analysis of a pebble with distributed fuel particles. Ann. Nucl. Energy, (2009) 3610.1016/j.anucene.2008.11.031Search in Google Scholar

30 Bernnat, W.: Neutron streaming effects in HTRs. EUROCOURSE Seminar on HTR Technology, Stuttgart 27–29 March 2007Search in Google Scholar

31 Evaluation of high temperature gas cooled reactor performance: Benchmark analysis related to initial testing of the HTTR and HTR-10. IAEA-TECDOC-1382 (2003).Search in Google Scholar

Received: 2011-03-10
Published Online: 2013-04-19
Published in Print: 2011-07-01

© 2011, Carl Hanser Verlag, München

Downloaded on 2.5.2024 from https://www.degruyter.com/document/doi/10.3139/124.110147/html
Scroll to top button