Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 1, 2013

Preparation of Hydroxyapatite Coating by Using Citric Acid Sodium Citrate Buffer System in the Biomimetic Procedure

Herstellung einer Hydroxyapatit-Beschichtung unter Verwendung eines Citronensäure-/Natriumcitrat-Puffersystems im biomimetischen Verfahren
  • Ibrahim Aydin , Hakan Cetinel , Ahmet Pasinli and Mithat Yuksel
From the journal Materials Testing

Abstract

The present study has been aimed to investigate the preparation and analysis of calcium phosphate (CaP) based hydroxyapatite (HA, Ca10(PO4)6(OH)2) coatings formed on Ti6Al4V alloys in a new buffer environment. The coating process has been performed by means of biomimetic method. In the study, a synthetic body fluid (SBF), which is fully compatible with human blood plasma, has been prepared for the first time in the literature by using the citric acid – sodium citrate buffer system. Using this buffer system will not cause any toxic reactions in the human body. CaP coating of the Ti6Al4V surface has been performed in this new SBF. The surface roughness and thickness specifications of the coatings have been determined, their microstructures have been analyzed by using a scanning electron microscope (SEM), the elemental analysis (EDX) of the coating surfaces and the XRD analysis have been done. The results are presented and discussed.

Kurzfassung

Die diesem Beitrag zugrundeliegende Studie zielte auf die Untersuchung der Herstellung und Analyse von Beschichtungen aus Calziumphosphat-basierten (CaP) Hydroxyapatit (HA: Ca10(PO4)6(OH)2) auf Ti6Al4V-Legierungen in einem neuen Puffersystem ab. Der Beschichtungsprozess wurde mittels eines biomimetischen Verfahrens ausgeführt. In der Studie wurde eine synthetische Körperflüssigkeit (synthetic body fluid, SBF), die mit menschlichem Blutplasma vollständig kompatibel ist, erstmals in der Literatur unter Verwendung des Citronensäure-/Natriumcitrat-Puffersystems hergestellt. Die Verwendung dieses Puffersystems verursacht keinerlei toxische Reaktionen im menschlichen Körper. Die CaP-Beschichtung der Ti6Al4V-Oberfläche wurde in diesem neuen SBF ausgeführt. Die Oberflächenrauheit und die Dicke der Beschichtungen wurden bestimmt, ihre Mikrostrukturen wurden mit dem Rasterelektronenmikroskop (REM) analysiert, die Elementanalyse der Beschichtungsoberflächen mit EDX und eine XRD-Analyse wurden ausgeführt. Die Ergebnisse werden präsentiert und diskutiert.

References

1 M.Gümüşderelioğlu: Biomodification of non-woven polyester fabrics by insulin and RGD for use in serum-free cultivation of tissue cells, Biomaterials, Journal of Science Technology23 (2002), Special Issue, pp. 510Search in Google Scholar

2 M.Hsieh, L.Perng, T.Chin, H.Perng: Phase purity of sol-gel-derived hydroxyapatite ceramic, Biomaterials22 (2001), pp. 26012607Search in Google Scholar

3 A. C.Taş: Synthesis of biomimetic Ca-Hydroxyapatite powders at 37 °C in synyhetic body fluids, Biomaterials21 (2000), pp. 1429143810.1016/S0142-9612(00)00019-3Search in Google Scholar

4 R.van Noort: Titanium: the implant material of today, Journal of Material Science22 (1987), pp. 3801381110.1007/BF01133326Search in Google Scholar

5 L. P.Ward, K. N.Strafford, T. P.Wilks, C.Subramanian: The role of refractory element based coating on the tribological and biological behaviour of orthopaedic implants, Journal of Materials Processing Technology56 (1996), pp. 364374Search in Google Scholar

6 P.Li, I.Kangasniemi, K.Groot, T.Kokubo: Bonelike HA induction by a gel-derived titania on a titanium substrate, Journal of American Ceramic Society77 (1994), No. 5, pp. 13071312Search in Google Scholar

7 H. M.Kim, F.Miyaji, T.Kokubo, T.Nakamura: Effect of heat treatment on apatite-forming ability of Ti metal induced by alkali treatment, Journal of Materials Science Materials in Medicine8 (1997), pp. 341347Search in Google Scholar

8 H. G.Willert, H.Bertram, G. H.Buchhorn: Osteolysis in alloarthroplasty of the hip: the role of bone cement fragmentation, Clinical Orthopedy258 (1990), pp. 108121Search in Google Scholar

9 W. N.Capello, J. A.D'Antonio, M. T.Manley, J. R.Feinberg: Hydroxyapatite in total hip arthroplasty: clinical results and critical issues, Clinical Orthopedy355 (1998), pp. 200211Search in Google Scholar

10 R.Geesink, N.Hoefnagels: Eight years' results of HA coated primary total hip replacement, Acta Orthopedica Belgica63 (1997), pp. 7275Search in Google Scholar

11 M.Hamadouche, L.Sedel: Ceramics in orthopaedics, Review article, The journal of bone & joint surgery82-B (2000), pp. 10951096Search in Google Scholar

12 W.Weng, J. L.Baptista: Preparation and character of HA coatings on Ti6Al4V alloy by a sol-gel method, Journal of American Ceramic Society82 (1999), No. 1, pp. 2732Search in Google Scholar

13 I.Aydin: An Investigation of Fracture and Wear Behavior of HA Coatings Deposited onto Ti6Al4V Alloys in a New Environment, PhD Thesis, Celal Bayar University, Turkey (2013)Search in Google Scholar

14 T.Hayakawa, M.Yoshinari, H.Kiba, H.Yamamoto, K.Nemoto, J. A.Jansen: Trabecular bone response to surface roughened and calcium phosphate (Ca-P) coated titanium implants, Biomaterials23 (2002), pp. 10251031Search in Google Scholar

15 M.Yoshinari, Y.Oda, T.Inoue, K.Matsuzaka, M.Shimono: Bone response to calcium phosphate-coated and bisphosphonate-immobilized titanium implants, Biomaterials23 (2002), pp. 28792885Search in Google Scholar

16 A.Citeau, J.Guicheux, C.Vinatier, P.Layrolle, T. P.Nguyen, P.Pilet, G.Daculsi: In vitro biological effects of titanium rough surface obtained by calcium phosphate grid blasting, Biomaterials26 (2005), pp. 157165Search in Google Scholar

17 C.Xiaobo, L.Yuncang, D. H.Peter, W.Cui'e: Microstructures and bond strengths of the calcium phosphate coatings formed on titanium from diffrent simulated body fluids, Materials Science and EngineeringC29 (2009), pp. 165171Search in Google Scholar

18 F. A.Simsek: Chemical Preparation of Calcium Hydroxyapatite in Synthetic Body Fluids at 37 °C and Its Use for Coating Some Metal Surfaces, MSc Thesis, Middle East Technical University, Turkey (1997)Search in Google Scholar

19 F.Li, Q. L.Feng, F. Z.Cui, H. D.Li, H.Schubert: A simple biomimetic method for calcium phosphate coating, Surface and Coating Technology154 (2002), pp. 8893Search in Google Scholar

20 W. Q.Yan, T.Nakamura, K.Kawanabe, S.Nishiguchi, M.Oka, T.Kokubo: Apatite layer–coated Ti for use as bone bonding implants, Biomaterials18 (1998), pp. 11851190Search in Google Scholar

21 A.Pasinli, M.Yuksel, E.Celik, S.Sener, C. A.Tas: A new approach in biomimetic synthesis of calcium phosphate coatings using lactic acid-Na lactate buffered body fluid solution, Acta Biomaterialia6 (2010), pp. 22822288Search in Google Scholar

22 J. B.Park, R. S.Lakes: Ceramic implant materials, Biomaterials – An Introduction, 2nd Ed., New York, USA (1992), pp. 121125Search in Google Scholar

23 H.Takadama, H. M.Kim, T.Kukuba, T.Nakamura: TEM-EDX study of mechanism of bonelike apatite formation on bioactivite titanium metal in simulated body fluid, Journal of Biomedical Material Resurce57 (2001), pp. 441448Search in Google Scholar

24 H. M.Kim, F.Miyaji, T.Kokuba, T.Nakamura: Preparation of bioactive Ti and its alloys via simple chemical surface treatment, Journal of Biomedical Material Resurce32 (1996), pp. 409417Search in Google Scholar

25 H. M.Kim, F.Miyaji, T.Kokuba, T.Nakamura: Bonding strenght of bonelike apatite layer on Ti metal substrate, Journal of Biomedical Material Resurce38 (1997), pp. 121127Search in Google Scholar

26 F.Barrere, C. A.van Blitterswijk, K.Groot, P.Layrolle: Influence of ionic strength and carbonate on the Ca-P coating formation from SBFx5 solution, Biomaterials23 (2002), pp. 19211930Search in Google Scholar

27 W. Q.Yan, T.Nakamura, K.Kawanabe, S.Nishiguchi, M.Oka, T.Kokubo: Apatite layer–coated Ti for use as bone bonding implants, Biomaterials18 (1997), pp. 11851190Search in Google Scholar

28 T.Kokubo, H. M.Kim, F.Miyaji, H.Takadama, T.Miyazaki: Ceramic-metal and ceramic-polymer composites prepared by a biomimetic process, Composites Part A, Applied Science and Manufacturing30 (1999), pp. 405409Search in Google Scholar

29 D.Bayraktar, A. C.Taş: Chemical Preparation of Carbonated Ca-HA Powders at 37 °C in Urea-Containing Synthetic Body Fluids, Journal of the European Ceramic Society19 (1999), pp. 25732579Search in Google Scholar

30 A.Sepahvandi, F.Moztarzadeh, M.Mozafari, M.Ghaffari, N.Raee: Photoluminescence in the characterization and early detection of biomimetic bone-like apatite formation on the surface of alkaline-treated titanium implant, State of the art, Colloids and Surfaces B: Biointerfaces86 (2011), pp. 390396Search in Google Scholar

31 J.Faure, A.Balamurugan, H.Benhayoune, P.Torres, G.Balossier, J. M. F.Ferreira: Morphological and chemical characterisation of biomimetic bonelike apatite formation on alkali treated Ti6Al4V titanium alloy, Materials Science and EngineeringC29 (2009), pp. 1252–1257Search in Google Scholar

32 P.Li: Biomimetic nano-apatite coating cabable of promoting bone ingrowth, Journal of Biomedical Materials Research Part66A (2003), Issue 1, pp. 79–85Search in Google Scholar

33 C.Xiaobo, L.Yuncan, D. H.Peter, W.Cui'e: Microstructures and bond strengths of the calcium phosphate coating formed on titanium from different simulated body fluids, Materials Science and EngineeringC29 (2009), pp. 165–171Search in Google Scholar

34 A.Pasinli, M.Yuksel, H.Havitcioglu, C. A.Tas, R. S.Aksoy, E.Celik, H.Yildiz, M.Toparli, A.Canatan, S.Sener: Calcium Phosphate Coating of Ti6Al4V by a Na-Lactate and Lactic Acid-Buffered Body Fluid Solution, PCT Patent Appl. No. WO (2009) /145741 A210.1016/j.actbio.2009.12.013Search in Google Scholar PubMed

Published Online: 2013-10-01
Published in Print: 2013-10-01

© 2013, Carl Hanser Verlag, München

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.3139/120.110501/html
Scroll to top button