Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 5, 2013

Compositional Analysis and Environmental Performance of LAS Produced from GTL Normal Paraffin and Different Alkylation Routes

Analyse der Zusammensetzung und Ökobilanz von LAS, hergestellt aus GTL-Normal-Paraffin, und verschiedene Alkylierungswege
  • C. V. Eadsforth , H. Dirkzwager and B. Maase

Abstract

The production of normal paraffin from Gas to Liquids (GTL) plants provides LAB producers with a more cost-effective feedstock than normal paraffin extracted from kerosene. Test results to date demonstrate that the performance of GTL Normal Paraffin, and LAB and LAS derived from it, however, is equal to that of kerosene derived normal paraffin. Recent work has particularly focussed on the environmental performance of LAS produced from GTL Normal Paraffin. Detailed GC and NMR analyses confirm that there is little, if any, significant difference in the analytical “profiles” of the kerosene and GTL Normal Paraffin derived LAS samples. It is therefore not surprising that there is no difference in the biodegradability of kerosene and GTL Normal Paraffin derived LAS samples. All samples achieved > 60% mineralisation after 28 days (OECD 301B); all these data were consistent with previous biodegradability data for LAS from European Chemical Bureau (ECB) and Human & Environmental Risk Assessment (HERA) databases. Similarly, there is no difference in the ecotoxicity of kerosene and GTL Normal Paraffin derived LAS samples. Test results to fish (LC50), invertebrates (EC50) and algae (EC50) lay in the range 1–10 mg/l, 1–10 mg/l and 10–100 mg/l respectively; again these data are entirely consistent with previous ecotoxicity data for LAS from ECB and HERA databases.

Kurzfassung

Die Produktion von Normal-Paraffin aus GTL(Gas to Liquids)-Anlagen bietet LAB-Herstellern einen kostengünstigeren Rohstoff gegenüber aus Kerosin gewonnenes Normal-Paraffin. Aktuelle Testergebnisse zeigen, dass die Güte von GTL-Normal-Paraffin und das daraus derivatisierte LAB und LAS dennoch gleichwertig mit dem aus Kerosin gewonnenen Normal-Paraffin ist. Neueste Arbeiten konzentrieren sich insbesondere auf die Ökobilanz von aus GTL-Normal-Paraffin hergestelltes LAS. Eingehende GC- und NMR-Analysen bestätigen, dass wenn überhaupt, nur ein gering signifikanter Unterschied in den analytischen Profilen zwischen den aus Kerosin und GTL-Normal Paraffin gewonenen LAS-Proben besteht. Es ist daher nicht überraschend, dass in der biologischen Abbaubarkeit kein Unterschied zwischen den aus Kerosin und GTL-Normal-Paraffin gewonnenen LAS-Proben besteht. Alle Proben erreichen eine Mineralisierung > 60% nach 28 Tagen (OECD 301B) und alle Werte stimmen mit den bisherigen Daten zur biologischen Abbaubarkeit für LAS aus den Datenbanken des Europäischen Büros für chemische Stoffe (ECB) und des Human & Environmental Risk Assessment (HERA) überein. Gleichermaßen besteht kein Unterschied in der Ökotoxizität zwischen den aus Kerosin und GTL-Normal-Paraffin gewonnenen LAS-Proben. Testergebnisse für Fisch (LC50), Wirbellose (EC50) und Algen (EC50) liegen im Bereich von 1–10 mg/l, 1–10 mg/l, bzw. 10–100 mg/l und wiederum stimmen diese Werte vollkommen mit den ökotoxikologischen Daten für LAS aus den Datenbanken von ECB und HERA überein.


Dr. Charles Eadsforth, Shell Health, Shell Technology Centre, Thornton, P.O. Box 1, Chester CH1 3SH, Cheshire, UK, Tel.: +441513735002, Fax: +441513735053. E-mail:

Charles Eadsforth holds a BSc (Hons) in Applied Chemistry and a PhD in Biochemistry from the University of Salford, Manchester. He has worked for Shell since 1980, initially in research at Sittingbourne Research Centre and Shell Technology Centre, Thornton and more recently providing environmental support to Shell businesses. He is a member of a number of international working groups dealing with environmental safety assessment of chemicals and oil products.

Henk Dirkzwager studied Organic Chemistry at Delft University of Technology. He joined Shell after military service in 1972 and has been involved since in process and product development programmes in various chemical business areas at the Research and Technology Centre, Amsterdam and assignments abroad. He is currently the project leader for the development of GTL Normal Paraffin as feedstock for LAS based detergent.

Bas Maase holds a BSc & MSc in Chemistry from Leiden University and a BSc & MSc in Business administration from the Erasmus University, Rotterdam. He joined Shell in 1998, working in a variety of commercial roles. His current responsibility is the pre-marketing of GTL Normal Paraffin from the Pearl GTL project, which is under construction in Qatar.


References

1. Maase, B.: Gas To Liquids paraffins and their impact on the detergent industry, CESIO Conference, 2004.Search in Google Scholar

2. Cavalli, L., Clerici, R., Radici, P. and Valtorta, L.: Update on LAB/LAS, Tenside Surf. Det.36 (1999) 254258.Search in Google Scholar

3. Tutunjian, P. N. and Ferris, J. A.: 13C NMR quantification of quaternary carbons in EXXAL-13 detergent alcohol, Westhollow Technical Center, WTC-RAB 5-96 (1996).Search in Google Scholar

4. Swisher, R. D.: Surfactant Biodegradation, Second Edition, Revised and Expanded, Surfactant Science Series, Volume 18, Marcel Dekker Inc., New York (1987).Search in Google Scholar

5. Battersby, N. S., Kravetz, L. and Salanitro, J. P.: Effect of branching on the biodegradability of alcohol-based surfactants, CESIO Conference, 2000.Search in Google Scholar

6. Di Corcia, A., Casassa, F., Crescenzi, C., Marcomini, A. and Saperi, R.: Investigation of the Fate of Linear Alkyl Benzenesulfonates and Coproducts in a Laboratory Biodegradation Test by using Liquid Chromatography/Mass Spectrometry, Environ. Sci. Technol.33 (1999) 41124118. 10.1021/es9905952Search in Google Scholar

7. Public Availability of data on EU High Production Volume Chemicals, European Chemicals Bureau website, (http://ecb.jrc.it/existing-chemicals).Search in Google Scholar

8. Human and Environmental Risk Assessment (HERA). Risk Assessment for Linear Alkylbenzene Sulphonate, (www.heraproject.com).Search in Google Scholar

9. Dunphy, J., Federle, T., Itrich, N., Simonich, S., Kloepper-Sams, P., Schiebel, J., Cripe, T. and Matthijs, E.: Environmental profile of improved alkyl benzene surfactants, CESIO Conference, 2000.Search in Google Scholar

10. Nielsen, A. M., Britton, L. N., Beall, C. E., McCormick, T. P. and Russell, G. L.: Biodegradation of Coproducts of Commercial Linear Alkylbenzene Sulfonate. Environmental Science & Technology31 (1987) 33973404. 10.1021/es970023mSearch in Google Scholar

11. Cavalli, L., Cassani, G., Lazzarin, M., Maraschin, C., Nucci, G., Berna, J. L., Bravo, J. and Moreno, A.: Iso-branching of Linear Alkylbenzene Sulphonate (LAS), Biodegradation study of two model compounds Toxicological & Environmental Chemistry54 (1996) 167186. 10.1080/02772249609358310Search in Google Scholar

12. Battersby, N. S.: Three linear alkylbenzene sulphonates (ex. MPC using SMDS paraffins, ex. MPC using MPC paraffins and ex. Shell Durban using SHOP ID): An assessment of “ready biodegradability” in the modified MITI (I) test. Shell Group Research Report, SBGR.93.106.Search in Google Scholar

13. Dorn, P. B., Salanitro, J. P., Evans, S. H. and Kravetz, L.: Assessing the aquatic hazard of some branched and linear non-ionic surfactants by biodegradation and toxicity. Environmental Toxicology and Chemistry12 (1996) 17511762. 10.1002/etc.5620121002Search in Google Scholar

Received: 2008-02-01
Published Online: 2013-04-05
Published in Print: 2008-07-01

© 2008, Carl Hanser Publisher, Munich

Downloaded on 27.5.2024 from https://www.degruyter.com/document/doi/10.3139/113.100376/html
Scroll to top button