skip to main content
10.5555/1596374.1596387dlproceedingsArticle/Chapter ViewAbstractPublication PagesconllConference Proceedingsconference-collections
research-article
Free Access

Representing words as regions in vector space

Published:04 June 2009Publication History

ABSTRACT

Vector space models of word meaning typically represent the meaning of a word as a vector computed by summing over all its corpus occurrences. Words close to this point in space can be assumed to be similar to it in meaning. But how far around this point does the region of similar meaning extend? In this paper we discuss two models that represent word meaning as regions in vector space. Both representations can be computed from traditional point representations in vector space. We find that both models perform at over 95% F-score on a token classification task.

References

  1. M. Connor and D. Roth. 2007. Context sensitive paraphrasing with a single unsupervised classifier. In Proceedings of ECML-07, Warsaw, Poland. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. K. Erk and S. Pado. 2008. A structured vector space model for word meaning in context. In Proceedings of EMNLP-08, Hawaii. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. K. Erk. 2009. Supporting inferences in semantic space: representing words as regions. In Proceedings of IWCS-8, Tilburg, Netherlands. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. P. Gärdenfors. 2004. Conceptual spaces. MIT press, Cambridge, MA.Google ScholarGoogle Scholar
  5. M. Geffet and I. Dagan. 2005. The distributional inclusion hypotheses and lexical entailment. In Proceedings of ACL-05, Ann Arbor, MI. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. J. Gorman and J. R. Curran. 2006. Scaling distributional similarity to large corpora. In Proceedings of ACL '06, Sydney. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. A. Hampton. 1991. The combination of prototype concepts. In P. Schwanenflugel, editor, The psychology of word meanings. Lawrence Erlbaum Associates.Google ScholarGoogle Scholar
  8. P. Hanks. 2000. Do word meanings exist? Computers and the Humanities, 34(1--2):205--215(11).Google ScholarGoogle Scholar
  9. M. Jones and D. Mewhort. 2007. Representing word menaing and order information in a composite holographic lexicon. Psychological Review, 114:1--37.Google ScholarGoogle ScholarCross RefCross Ref
  10. A. Kilgarriff. 1997. I don't believe in word senses. Computers and the Humanities, 31(2):91--113.Google ScholarGoogle ScholarCross RefCross Ref
  11. W. Kintsch. 2001. Predication. Cognitive Science, 25:173--202.Google ScholarGoogle ScholarCross RefCross Ref
  12. T. Landauer and S. Dumais. 1997. A solution to Platos problem: the latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104(2):211--240.Google ScholarGoogle ScholarCross RefCross Ref
  13. D. Lin. 1993. Principle-based parsing without overgeneration. In Proceedings of ACL'93, Columbus, Ohio. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. D. Lin. 1998. Automatic retrieval and clustering of similar words. In COLING-ACL98, Montreal, Canada. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. W. Lowe and S. McDonald. 2000. The direct route: Mediated priming in semantic space. In Proceedings of the Cognitive Science Society.Google ScholarGoogle Scholar
  16. W. Lowe. 2001. Towards a theory of semantic space. In Proceedings of the Cognitive Science Society.Google ScholarGoogle Scholar
  17. K. Lund and C. Burgess. 1996. Producing high-dimensional semantic spaces from lexical co-occurrence. Behavior Research Methods, Instruments, and Computers, 28:203--208.Google ScholarGoogle ScholarCross RefCross Ref
  18. C. D. Manning, P. Raghavan, and H. Schütze. 2008. Introduction to Information Retrieval. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. D. McCarthy, R. Koeling, J. Weeds, and J. Carroll. 2004. Finding predominant senses in untagged text. In Proceedings of ACL'04, Barcelona, Spain. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. S. McDonald and M. Ramscar. 2001. Testing the distributional hypothesis: The influence of context on judgements of semantic similarity. In Proceedings of the Cognitive Science Society.Google ScholarGoogle Scholar
  21. J. Mitchell and M. Lapata. 2008. Vector-based models of semantic composition. In Proceedings of ACL-08, Columbus, OH.Google ScholarGoogle Scholar
  22. G. L. Murphy. 2002. The Big Book of Concepts. MIT Press.Google ScholarGoogle Scholar
  23. R. M. Nosofsky. 1986. Attention, similarity, and the identification-categorization relationship. Journal of Experimental Psychology: General, 115:39--57.Google ScholarGoogle ScholarCross RefCross Ref
  24. S. Padó and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics, 33(2):161--199. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. M. Sahlgren and J. Karlgren. 2005. Automatic bilingual lexicon acquisition using random indexing of parallel corpora. Journal of Natural Language Engineering, Special Issue on Parallel Texts, 11(3). Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. H. Schütze. 1998. Automatic word sense discrimination. Computational Linguistics, 24(1). Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. R. Shepard. 1987. Towards a universal law of generalization for psychological science. Science, 237(4820):1317--1323.Google ScholarGoogle ScholarCross RefCross Ref
  28. E. E. Smith, D. Osherson, L. J. Rips, and M. Keane. 1988. Combining prototypes: A selective modification model. Cognitive Science, 12(4):485--527.Google ScholarGoogle ScholarCross RefCross Ref
  29. P. Smolensky. 1990. Tensor product variable binding and the representation of symbolic structures in connectionist systems. Artificial Intelligence, 46:159--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. R. Snow, D. Jurafsky, and A. Y. Ng. 2006. Semantic taxonomy induction from heterogenous evidence. In Proceedings of COLING/ACL'06. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. I. Szpektor, I. Dagan, R. Bar-Haim, and J. Goldberger. 2008. Contextual preferences. In Proceedings of ACL-08, Columbus, OH.Google ScholarGoogle Scholar
  32. J. Weeds, D. Weir, and D. McCarthy. 2004. Characterising measures of lexical distributional similarity. In Proceedings of COLING-04, Geneva, Switzerland. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Representing words as regions in vector space

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image DL Hosted proceedings
            CoNLL '09: Proceedings of the Thirteenth Conference on Computational Natural Language Learning
            June 2009
            243 pages
            ISBN:9781932432299

            Publisher

            Association for Computational Linguistics

            United States

            Publication History

            • Published: 4 June 2009

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader