Research Article
BibTex RIS Cite
Year 2023, Volume: 7 Issue: 4, 314 - 321, 05.10.2023
https://doi.org/10.31127/tuje.1191785

Abstract

References

  • Naqvi, S. R., Prabhakara, H. M., Bramer, E. A., Dierkes, W., Akkerman, R., & Brem, G. (2018). A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy. Resources, conservation and recycling, 136, 118-129.
  • Lin, S., & Waas, A. M. (2021). The effect of stacking sequence on the LVI damage of laminated composites; experiments and analysis. Composites Part A: Applied Science and Manufacturing, 145, 106377.
  • Kazemi, M. E., Shanmugam, L., Dadashi, A., Shakouri, M., Lu, D., Du, Z., ... & Yang, J. (2021). Investigating the roles of fiber, resin, and stacking sequence on the low-velocity impact response of novel hybrid thermoplastic composites. Composites Part B: Engineering, 207, 108554.
  • Supian, A. B. M., Sapuan, S. M., Jawaid, M., Zuhri, M. Y. M., Ilyas, R. A., & Syamsir, A. (2022). Crashworthiness response of filament wound kenaf/glass fibre-reinforced epoxy composite tubes with influence of stacking sequence under intermediate-velocity impact load. Fibers and Polymers, 23(1), 222-233.
  • Garouge, S. E., Tarfaoui, M., Hassoon, O. H., Minor, H. E., & Bendarma, A. (2022). Effect of stacking sequence on the mechanical performance of the composite structure under slamming impact. Materials Today: Proceedings, 52, 29-39.
  • Goh, G. D., Dikshit, V., Nagalingam, A. P., Goh, G. L., Agarwala, S., Sing, S. L., ... & Yeong, W. Y. (2018). Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics. Materials & Design, 137, 79-89.
  • Günöz, A., Kepir, Y. & Kara, M. (2022). The investigation of hardness and density properties of GFRP composite pipes under seawater conditions. Turkish Journal of Engineering, 6 (1), 34-39
  • Yang, G., Park, M., & Park, S. J. (2019). Recent progresses of fabrication and characterization of fibers-reinforced composites: A review. Composites Communications, 14, 34-42.
  • Lertwassana, W., Parnklang, T., Mora, P., Jubsilp, C., & Rimdusit, S. (2019). High performance aramid pulp/carbon fiber-reinforced polybenzoxazine composites as friction materials. Composites Part B: Engineering, 177, 107280.
  • Qi, G., Zhang, B., Du, S., & Yu, Y. (2017). Estimation of aramid fiber/epoxy interfacial properties by fiber bundle tests and multiscale modeling considering the fiber skin/core structure. Composite Structures, 167, 1-10.
  • Raphael, N., Namratha, K., Chandrashekar, B. N., Sadasivuni, K. K., Ponnamma, D., Smitha, A. S., ... & Byrappa, K. J. P. I. C. G. (2018). Surface modification and grafting of carbon fibers: A route to better interface. Progress in Crystal Growth and Characterization of Materials, 64(3), 75-101.
  • Akan, A. E., & Ünal, F. (2020). Thin-Layer Drying Modeling in the Hot Oil-Heated Stenter. International Journal of Thermophysics, 41(8), 1-27.
  • Carrera, E., & Pagani, A. (2014). Free vibration analysis of civil engineering structures by component-wise models. Journal of Sound and Vibration, 333(19), 4597-4620.
  • Yilmaz, H. M., Aktan, N., Çolak, A., & Alptekin, A. (2022). Modelling Ozancık village (Aksaray) in computer environment using UAV photogrammetry. Mersin Photogrammetry Journal, 4(1), 32-36.
  • Kip, M., & Goren, A. (2022). Güneş Enerjili Hafif Aracın Arka Salıncak Kolunun Topoloji Optimizasyonu Çalışması. Journal of Science, Technology and Engineering Research, 3(2), 42-49.
  • Beyazit, N. I., Unal, F., & Bulut, H. (2020). Modeling of the hourly horizontal solar diffuse radiation in Sanliurfa, Turkey. Thermal Science, 24(2 Part A), 939-950.
  • Song, J. H. (2015). Pairing effect and tensile properties of laminated high-performance hybrid composites prepared using carbon/glass and carbon/aramid fibers. Composites Part B: Engineering, 79, 61-66.
  • Jaroslaw, B., Barbara, S., & Patryk, J. (2016). The comparison of low‐velocity impact resistance of aluminum/carbon and glass fiber metal laminates. Polymer Composites, 37(4), 1056-1063.
  • Wagih, A., Sebaey, T. A., Yudhanto, A., & Lubineau, G. (2020). Post-impact flexural behavior of carbon-aramid/epoxy hybrid composites. Composite Structures, 239, 112022.
  • Gemi, D. S., Şahin, Ö. S., & Gemi, L. (2021). Experimental investigation of the effect of diameter upon low velocity impact response of glass fiber reinforced composite pipes. Composite Structures, 275, 114428.
  • Rezasefat, M., Gonzalez-Jimenez, A., Ma, D., Vescovini, A., Lomazzi, L., da Silva, A. A., ... & Manes, A. (2022). Experimental study on the low-velocity impact response of inter-ply S2-glass/aramid woven fabric hybrid laminates. Thin-Walled Structures, 177, 109458.
  • Uyaner, M., Kara, M., Kepir, Y., & Gunoz, A. (2022). Virtual Testing of Laminated Composites Subjected to Low-Velocity Impact. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 1-16.
  • Berk, B., Karakuzu, R., Murat Icten, B., Arikan, V., Arman, Y., Atas, C., & Goren, A. (2016). An experimental and numerical investigation on low velocity impact behavior of composite plates. Journal of Composite Materials, 50(25), 3551-3559.
  • Maghsoudlou, M. A., Barbaz Isfahani, R., Saber-Samandari, S., & Sadighi, M. (2021). The response of GFRP nanocomposites reinforced with functionalized SWCNT under low velocity impact: experimental and LS-DYNA simulation investigations. Iranian Journal of Materials Science and Engineering, 18(2), 1-11.
  • Sayer, M. (2009). Hibrit kompozitlerin darbe davranışlarının incelenmesi. (PHD Thesis), Pamukkale University.
  • Alkhatib, F., Mahdi, E., & Dean, A. (2020). Crushing response of CFRP and KFRP composite corrugated tubes to quasi-static slipping axial loading: experimental investigation and numerical simulation. Composite Structures, 246, 112370.
  • Singh, N. K., & Singh, K. K. (2015). Review on impact analysis of FRP composites validated by LS‐DYNA. Polymer Composites, 36(10), 1786-1798.
  • Uyaner, M., & Kara, M. (2007). Dynamic response of laminated composites subjected to low-velocity impact. Journal of Composite materials, 41(24), 2877-2896.

A numerical study on the low-velocity impact response of hybrid composite materials

Year 2023, Volume: 7 Issue: 4, 314 - 321, 05.10.2023
https://doi.org/10.31127/tuje.1191785

Abstract

Composite materials are advanced engineering materials with superior properties to traditional materials. One of the most important disadvantages is the high cost of composite materials. Therefore, producing composite materials from the first to the last stage is a very important process. Homogenization is the most important parameter in production since composites contain more than one material type in their structure. In addition, composite structures are sensitive materials against low-velocity impacts. In this study, the effect of reinforcement material combination and stacking sequence on mechanical properties used in the production of composite materials was investigated by low-velocity impact simulations using LS-DYNA software. The mass of the 12 mm diameter spherical impactor used in the analyzes was determined as 10 kg and low-velocity impact tests were applied at 20 J, 30 J and 40 J energy levels. The composite samples were modeled with 180x100mm dimensions and the contact between the impactor and the sample was made from the center of the composite structure. Numerical analyzes were performed using the Tsai-Wu damage criterion in the LS-DYNA software, and material properties were defined using the "Mat_Enhanced_Composite_Damage (MAT 055)" material card.

References

  • Naqvi, S. R., Prabhakara, H. M., Bramer, E. A., Dierkes, W., Akkerman, R., & Brem, G. (2018). A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy. Resources, conservation and recycling, 136, 118-129.
  • Lin, S., & Waas, A. M. (2021). The effect of stacking sequence on the LVI damage of laminated composites; experiments and analysis. Composites Part A: Applied Science and Manufacturing, 145, 106377.
  • Kazemi, M. E., Shanmugam, L., Dadashi, A., Shakouri, M., Lu, D., Du, Z., ... & Yang, J. (2021). Investigating the roles of fiber, resin, and stacking sequence on the low-velocity impact response of novel hybrid thermoplastic composites. Composites Part B: Engineering, 207, 108554.
  • Supian, A. B. M., Sapuan, S. M., Jawaid, M., Zuhri, M. Y. M., Ilyas, R. A., & Syamsir, A. (2022). Crashworthiness response of filament wound kenaf/glass fibre-reinforced epoxy composite tubes with influence of stacking sequence under intermediate-velocity impact load. Fibers and Polymers, 23(1), 222-233.
  • Garouge, S. E., Tarfaoui, M., Hassoon, O. H., Minor, H. E., & Bendarma, A. (2022). Effect of stacking sequence on the mechanical performance of the composite structure under slamming impact. Materials Today: Proceedings, 52, 29-39.
  • Goh, G. D., Dikshit, V., Nagalingam, A. P., Goh, G. L., Agarwala, S., Sing, S. L., ... & Yeong, W. Y. (2018). Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics. Materials & Design, 137, 79-89.
  • Günöz, A., Kepir, Y. & Kara, M. (2022). The investigation of hardness and density properties of GFRP composite pipes under seawater conditions. Turkish Journal of Engineering, 6 (1), 34-39
  • Yang, G., Park, M., & Park, S. J. (2019). Recent progresses of fabrication and characterization of fibers-reinforced composites: A review. Composites Communications, 14, 34-42.
  • Lertwassana, W., Parnklang, T., Mora, P., Jubsilp, C., & Rimdusit, S. (2019). High performance aramid pulp/carbon fiber-reinforced polybenzoxazine composites as friction materials. Composites Part B: Engineering, 177, 107280.
  • Qi, G., Zhang, B., Du, S., & Yu, Y. (2017). Estimation of aramid fiber/epoxy interfacial properties by fiber bundle tests and multiscale modeling considering the fiber skin/core structure. Composite Structures, 167, 1-10.
  • Raphael, N., Namratha, K., Chandrashekar, B. N., Sadasivuni, K. K., Ponnamma, D., Smitha, A. S., ... & Byrappa, K. J. P. I. C. G. (2018). Surface modification and grafting of carbon fibers: A route to better interface. Progress in Crystal Growth and Characterization of Materials, 64(3), 75-101.
  • Akan, A. E., & Ünal, F. (2020). Thin-Layer Drying Modeling in the Hot Oil-Heated Stenter. International Journal of Thermophysics, 41(8), 1-27.
  • Carrera, E., & Pagani, A. (2014). Free vibration analysis of civil engineering structures by component-wise models. Journal of Sound and Vibration, 333(19), 4597-4620.
  • Yilmaz, H. M., Aktan, N., Çolak, A., & Alptekin, A. (2022). Modelling Ozancık village (Aksaray) in computer environment using UAV photogrammetry. Mersin Photogrammetry Journal, 4(1), 32-36.
  • Kip, M., & Goren, A. (2022). Güneş Enerjili Hafif Aracın Arka Salıncak Kolunun Topoloji Optimizasyonu Çalışması. Journal of Science, Technology and Engineering Research, 3(2), 42-49.
  • Beyazit, N. I., Unal, F., & Bulut, H. (2020). Modeling of the hourly horizontal solar diffuse radiation in Sanliurfa, Turkey. Thermal Science, 24(2 Part A), 939-950.
  • Song, J. H. (2015). Pairing effect and tensile properties of laminated high-performance hybrid composites prepared using carbon/glass and carbon/aramid fibers. Composites Part B: Engineering, 79, 61-66.
  • Jaroslaw, B., Barbara, S., & Patryk, J. (2016). The comparison of low‐velocity impact resistance of aluminum/carbon and glass fiber metal laminates. Polymer Composites, 37(4), 1056-1063.
  • Wagih, A., Sebaey, T. A., Yudhanto, A., & Lubineau, G. (2020). Post-impact flexural behavior of carbon-aramid/epoxy hybrid composites. Composite Structures, 239, 112022.
  • Gemi, D. S., Şahin, Ö. S., & Gemi, L. (2021). Experimental investigation of the effect of diameter upon low velocity impact response of glass fiber reinforced composite pipes. Composite Structures, 275, 114428.
  • Rezasefat, M., Gonzalez-Jimenez, A., Ma, D., Vescovini, A., Lomazzi, L., da Silva, A. A., ... & Manes, A. (2022). Experimental study on the low-velocity impact response of inter-ply S2-glass/aramid woven fabric hybrid laminates. Thin-Walled Structures, 177, 109458.
  • Uyaner, M., Kara, M., Kepir, Y., & Gunoz, A. (2022). Virtual Testing of Laminated Composites Subjected to Low-Velocity Impact. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 1-16.
  • Berk, B., Karakuzu, R., Murat Icten, B., Arikan, V., Arman, Y., Atas, C., & Goren, A. (2016). An experimental and numerical investigation on low velocity impact behavior of composite plates. Journal of Composite Materials, 50(25), 3551-3559.
  • Maghsoudlou, M. A., Barbaz Isfahani, R., Saber-Samandari, S., & Sadighi, M. (2021). The response of GFRP nanocomposites reinforced with functionalized SWCNT under low velocity impact: experimental and LS-DYNA simulation investigations. Iranian Journal of Materials Science and Engineering, 18(2), 1-11.
  • Sayer, M. (2009). Hibrit kompozitlerin darbe davranışlarının incelenmesi. (PHD Thesis), Pamukkale University.
  • Alkhatib, F., Mahdi, E., & Dean, A. (2020). Crushing response of CFRP and KFRP composite corrugated tubes to quasi-static slipping axial loading: experimental investigation and numerical simulation. Composite Structures, 246, 112370.
  • Singh, N. K., & Singh, K. K. (2015). Review on impact analysis of FRP composites validated by LS‐DYNA. Polymer Composites, 36(10), 1786-1798.
  • Uyaner, M., & Kara, M. (2007). Dynamic response of laminated composites subjected to low-velocity impact. Journal of Composite materials, 41(24), 2877-2896.
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Uzay Gezer 0000-0003-3088-7610

Bünyamin Demir 0000-0002-6405-4724

Yusuf Kepir 0000-0002-3536-3931

Alper Günöz 0000-0001-7978-6306

Memduh Kara 0000-0002-5201-5453

Early Pub Date June 22, 2023
Publication Date October 5, 2023
Published in Issue Year 2023 Volume: 7 Issue: 4

Cite

APA Gezer, U., Demir, B., Kepir, Y., Günöz, A., et al. (2023). A numerical study on the low-velocity impact response of hybrid composite materials. Turkish Journal of Engineering, 7(4), 314-321. https://doi.org/10.31127/tuje.1191785
AMA Gezer U, Demir B, Kepir Y, Günöz A, Kara M. A numerical study on the low-velocity impact response of hybrid composite materials. TUJE. October 2023;7(4):314-321. doi:10.31127/tuje.1191785
Chicago Gezer, Uzay, Bünyamin Demir, Yusuf Kepir, Alper Günöz, and Memduh Kara. “A Numerical Study on the Low-Velocity Impact Response of Hybrid Composite Materials”. Turkish Journal of Engineering 7, no. 4 (October 2023): 314-21. https://doi.org/10.31127/tuje.1191785.
EndNote Gezer U, Demir B, Kepir Y, Günöz A, Kara M (October 1, 2023) A numerical study on the low-velocity impact response of hybrid composite materials. Turkish Journal of Engineering 7 4 314–321.
IEEE U. Gezer, B. Demir, Y. Kepir, A. Günöz, and M. Kara, “A numerical study on the low-velocity impact response of hybrid composite materials”, TUJE, vol. 7, no. 4, pp. 314–321, 2023, doi: 10.31127/tuje.1191785.
ISNAD Gezer, Uzay et al. “A Numerical Study on the Low-Velocity Impact Response of Hybrid Composite Materials”. Turkish Journal of Engineering 7/4 (October 2023), 314-321. https://doi.org/10.31127/tuje.1191785.
JAMA Gezer U, Demir B, Kepir Y, Günöz A, Kara M. A numerical study on the low-velocity impact response of hybrid composite materials. TUJE. 2023;7:314–321.
MLA Gezer, Uzay et al. “A Numerical Study on the Low-Velocity Impact Response of Hybrid Composite Materials”. Turkish Journal of Engineering, vol. 7, no. 4, 2023, pp. 314-21, doi:10.31127/tuje.1191785.
Vancouver Gezer U, Demir B, Kepir Y, Günöz A, Kara M. A numerical study on the low-velocity impact response of hybrid composite materials. TUJE. 2023;7(4):314-21.
Flag Counter