Skip to main content
Log in

Electrochemical production of peroxocarbonate at room temperature using conductive diamond anodes

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This work describes a method for synthesizing sodium peroxocarbonate by electoxidation of carbonate on conductive-diamond thin film electrodes in a sodium carbonate solution at room temperature. The effect of several parameters including: electrolyte concentration, current intensity, addition of Na2SiO3 as a stabilizing agent, and increments in temperature for sodium peroxocarbonate formation has been studied in an electrochemical H cell of two compartments separated by a cation-exchange membrane. The oxidant formation has been confirmed by cyclic voltammetry and in situ reduction during water electrolysis. The optimal experimental conditions are: the current density of 34.3 mA cm−2, an electrolyte concentration of 1 M, and the addition of 4 g/L of sodium metasilicate in the two compartments of the electrochemical cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Michaud, P.A., Mahé, E., Haenni, W., Perret, A., and Comninellis, C., Preparation of peroxodisulfuric acid using boron-doped diamond thin film electrodes, Electrochem. Solid State, 2000, vol. 3, no. 2, pp. 77–79.

    Article  Google Scholar 

  2. Cañizares, P., Sáez, C., Sánchez-Carretero, A., and Rodrigo, M.A., Synthesis of novel oxidants by electrochemical technology, J. Appl. Electrochem., 2009, vol. 39, no. 11, pp. 2143–2149.

    Article  Google Scholar 

  3. Serrano, K., Michaud, P.A., Comninellis, C., and Savall, A., Electrochemicalpreparation of peroxodisulfuric acid using boron-doped diamond thin film electrodes, Electrochimica Acta, 2002, vol. 48, no. 4, pp. 431–436.

    Article  Google Scholar 

  4. Michaud, P.A., Panizza, M., Ouattara, L., Diaco, T., Foti, G., and Comninellis, C., Electrochemical oxidation of water on synthetic boron-doped diamond thin film anodes, J. Appl. Electrochem., 2003, vol. 33, no. 2, pp. 151–154.

    Article  Google Scholar 

  5. Marselli, B., Garcia-Gomez, J., Michaud, P.A., Rodrigo, M.A., and Comninellis, C., Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes, J. Electrochem. Soc., 2003, vol. 150, no. 3, pp. D79–D83.

    Article  Google Scholar 

  6. Sáez, C., Rodrigo, M.A., and Cañizares, P., Electrosynthesis of ferrates with diamond anodes, American Institute of Chemical Engineers J., 2008 vol. 54, no. 6, pp. 1600–1607.

    Article  Google Scholar 

  7. Villanueva-Rodríguez, M., Sánchez-Sánchez, C.M., Montiel, V., Brillas, E., Peralta-Hernández, J.M., and Hernández-Ramirez, A., Characterization of ferrate ion electrogeneration in acidic media by voltammetry and scanning electrochemical microscopy, Assessment of its reactivity on 2,4-dichlorophenoxyacetic acid degradation, Electrochimica Acta, 2012, vol. 64, pp. 196–204.

    Article  Google Scholar 

  8. Khamis, D., Mahé, E., Dardoize, F., and Devilliers, D., Peroxodisulfate generation on boron-doped diamond microelectrodes array and detection by scanning electrochemical microscopy, J. Appl. Electrochem., 2010, vol. 40, no. 10, pp. 1829–1838.

    Article  Google Scholar 

  9. Weiss, E., Sáez, C., Groenen-Serrano, K., Cañizares, P., Savall, A., and Rodrigo, M.A., Electrochemical synthesis of peroxomonophosphate using boron-doped diamond anodes, J. Appl. Electrochem., 2008, vol. 38, no. 1, pp. 93–100.

    Article  Google Scholar 

  10. Chaplin, B.P., Hubler, D.K., and Farrell, J., Understanding anodic wear at boron doped diamond film electrodes, Electrochimica Acta, 2013, vol. 89, pp. 122–131.

    Article  Google Scholar 

  11. Sánchez-Carretero, A., Rodrigo, M.A., Cañizares, P., and Sáez, C., Electrochemical synthesis of ferrate in presence of ultrasound using boron-doped diamond anodes, Electrochem Commun., 2010, vol. 12, no. 5, pp. 644–646.

    Article  Google Scholar 

  12. Cotillas, S., Sánchez-Carretero, A., Cañizares, P., Sáez, C., and Rodrigo, M.A., Electrochemical synthesis of peroxyacetic acid using conductive diamond electrodes, Ind. Eng. Chem. Res., 2011, vol. 50, no. 18, pp. 10889–10893.

    Article  Google Scholar 

  13. Sáez, C., Cañizares, P., Sánchez-Carretero, A., and Rodrigo, M.A., Electrochemical synthesis of perbromate using conductive-diamond anodes, J. Appl. Electrochem., 2010, vol. 40, no. 10, pp. 1715–1719.

    Article  Google Scholar 

  14. Sánchez-Carretero, A., Sáez, C., Cañizares, P., and Rodrigo, M.A., Electrochemical production of perchlorates using conductive diamond electrolyses, Chem. Eng. J., 2011, vol. 166, no. 2, pp. 710–714.

    Article  Google Scholar 

  15. Saha, M.S., Furuta, T., and Nishiki, Y., Electrochemical synthesis of sodium peroxycarbonate at boron-doped diamond electrodes, Electrochem. Solid St., 2003, vol. 6, no. 7, pp. D5–D7.

    Article  Google Scholar 

  16. Ruiz, E.J., Ortega-Borges, R., Jurado, J.L., Chapman, T.W., and Meas, Y., Simultaneous anodic and cathodic production of sodium percarbonate in aqueous solution, Electrochem. Solid St., 2009, vol. 12, no. 1, pp. E1–E4.

    Article  Google Scholar 

  17. Costa, C.R., Montilla, F., Morallón, E., and Olivi, P., Electrochemical oxidation of acid black 210 dye on the boron-doped diamond electrode in the presence of phosphate ions: effect of current density, pH, and chloride ions, Electrochimica Acta., 2009, vol. 54, no. 27, pp. 7048–7055.

    Article  Google Scholar 

  18. Zhang, J. and Oloman, C., Electro-oxidation of carbonate in aqueous solution on a platinum rotating ring disk electrode, J. Appl. Electrochem., 2005, vol. 35, no. 10, pp. 945–953.

    Article  Google Scholar 

  19. Koukabi, N., Sodium percarbonate: A versatile oxidizing reagent, Synlett., 2010 (EFirst), pp. 2969–2970.

    Google Scholar 

  20. Manoharan, G.M., Raghavendran, N.S., and Narasimham, K.C., Electrolytic preparation of sodium and potassium percarbonate, Transactions of the SAEST, 2000, vol. 35, no. 2, pp. 69–72.

    Google Scholar 

  21. Osetrova, N.V., Bagotzky, V.S., Guizhevsky, S.F., and Serov, Y.M., Electrochemical reduction of carbonate solutions at low temperatures, J. Electroanal. Chem., 1998, vol. 453, nos. 1–2, pp. 239–241.

    Article  Google Scholar 

  22. Saha, M.S., Furuta, T., and Nishiki, Y., Conversion of carbon dioxide to peroxycarbonate at boron-doped diamond electrode, Electrochem. Commun., 2004, vol. 6, no. 2, pp. 201–204.

    Article  Google Scholar 

  23. Petrucci, E. and Montanaro, D., Anodic oxidation of a simulated effluent containing reactive blue 19 on a boron-doped diamond electrode, Chem. Eng. J., 2011, vol. 174, nos. 2–3, pp. 612–618.

    Article  Google Scholar 

  24. Zhubrikov, A.V., Legurova, E.A., Gutkin, V., Uvarov, V., Khitrov, N.V., Lev, O., Tripol’skaya, T.A., and Prikhodchenko, P.V., XPS characterization of sodium percarbonate granulated with sodium silicate, Rus. J. Inorganic Chemistry, 2009, vol. 54, no. 9, pp. 1455–1458.

    Article  Google Scholar 

  25. ASTM International WC, PA, 2003, ASTM D2180-89 (2008), Standard Test Method for Active Oxygen in Bleaching Compounds, ASTM. 2008.

  26. Martínez-Huitle, C.A. and Brillas, E., Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review, Appl. Catal. B-Environ., 2009, vol. 87, nos. 3–4, pp. 105–145.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. J. Ruiz-Ruiz.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Ruiz, E.J., Meas, Y., Ortega-Borges, R. et al. Electrochemical production of peroxocarbonate at room temperature using conductive diamond anodes. Surf. Engin. Appl.Electrochem. 50, 478–484 (2014). https://doi.org/10.3103/S106837551406009X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106837551406009X

Keywords

Navigation