Skip to main content
Log in

Thermo-Optical Bistability in a Compact High-Q Cavity at a Wavelength of 1550 nm

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract—

The bistability effect caused by radiation absorption in mirrors of a compact high-Q cavity at a wavelength of 1550 nm is studied. The effect leads to a hysteresis of the cavity transmission when scanning the radiation frequency in different directions. The dependence of the effect on the cavity supplied power is studied, and the experimental data are compared with simulation results. The effect under study can be used in the development of optical logical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Gibbs, H., Optical Bistability: Controlling Light with Light, Orlando: Academic, 1985.

    Google Scholar 

  2. An, K., Sones, B.A., Fang-Yen, C., Dasari, R.R., and Feld, M.S., Optical bistability induced by mirror absorption: measurement of absorption coefficients at the sub-ppm level, Opt. Lett., 1997, vol. 22, pp. 1433–1435. https://doi.org/10.1364/OL.22.001433

    Article  ADS  Google Scholar 

  3. Hasegawa, T., Optical bistability induced by Gouy phase shift, J. Opt. Soc. Am. B, 2017, vol. 34, pp. 1319–1326. https://doi.org/10.1364/JOSAB.34.001319

    Article  ADS  Google Scholar 

  4. Gu, T., Yu, M., Kwong, D.-L., and Wong, C.W., Molecular-absorption-induced thermal bistability in PECVD silicon nitride microring resonators, Opt. Express, 2014, vol. 22, pp. 18412–18420. https://doi.org/10.1364/OE.22.018412

    Article  ADS  Google Scholar 

  5. Yu, Y.F., Zhang, J.B., Bourouina, T., and Liu, A.Q., Optical-force-induced bistability in nanomachined ring resonator systems, Appl. Phys. Lett., 2012, vol. 100, p. 093108. https://doi.org/10.1063/1.3690955

  6. Tian, F., Zhou, G., Du, Y., et al., Optical spring effect in nanoelectromechanical systems, Appl. Phys. Lett., 2014, vol. 105, p. 061115. https://doi.org/10.1063/1.4893379

  7. Yanik, M.F., Fan, S., Soljačić, M., and Joannopoulos, J.D., All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry, Opt. Lett., 2003, vol. 28, pp. 2506–2508. https://doi.org/10.1364/OL.28.002506

    Article  ADS  Google Scholar 

  8. Nozaki, K., Shinya, A., Matsuo, S., et al., Ultralow-power all-optical RAM based on nanocavities, Nat. Photonics, 2012, vol. 6, pp. 248—252. https://doi.org/10.1038/nphoton.2012.2

    Article  ADS  Google Scholar 

  9. Ma, J., Qin, J., Campbell, G.T., et al., Photothermally induced transparency, Sci. Adv., 2020, vol. 6, p. eaax8256. https://doi.org/10.1126/sciadv.aax8256

  10. Del Bino, L., Moroney, N., and Del’Haye, P., Optical memories and switching dynamics of counterpropagating light states in microresonators, Opt. Express, 2021, vol. 29, pp. 2193–2203. https://doi.org/10.1364/OE.417951

    Article  ADS  Google Scholar 

  11. Reinecke, R. and Black, E., Thermal Self-Locking in a Fabry—Perot Cavity, LIGO Report, 2005. https://dcc.ligo.org/public/0027/T050272/000/T050272-00.pdf.

  12. Vishnyakova, G.A., Kryuchkov, D.S., Zhadnov, N.O., et al., Ultra-stable silicon cavities for fundamental researches and applications, AIP Conf. Proc., 2020, vol. 2241, p. 020037. https://doi.org/10.1063/5.0011496

  13. Kryuchkov, D.S., Kudeyarov, K.S., Vishnyakova, G.A., et al., Compact high-finesse ULE cavities for laser frequency stabilization, Bull. Lebedev Phys. Inst., 2021, vol. 48, no. 10, pp. 295–300. https://doi.org/10.3103/S1068335621100092

    Article  Google Scholar 

  14. Kudeyarov, K.S., Golovizin, A.A., Borisenko, A.S., et al., Comparison of three ultrastable lasers with a femtosecond frequency comb, JETP Lett., 2021, vol. 114, no. 5, pp. 243–249. https://doi.org/10.1134/S0021364021170082

    Article  ADS  Google Scholar 

  15. Tereshchenko, E.O., https://github.com/eteresh/optical_cavity_thermal_bistability.

  16. Rempe, G., Thompson, R.J., Kimble, H.J., and Lalezari, R., Measurement of ultralow losses in an optical interferometer, Opt. Lett., 1992, vol. 17, pp. 363–365. https://doi.org/10.1364/OL.17.000363

    Article  ADS  Google Scholar 

  17. Drever, R.W.P., Hall, J.L., Kowalski, F.V., et al., Laser phase and frequency stabilization using an optical resonator, Appl. Phys. B, 1983, vol. 31, no. 2, pp. 97–105. https://doi.org/10.1007/BF00702605

    Article  ADS  Google Scholar 

  18. Swierad, D., Hafner, S., Vogt, S., et al., Ultra-stable clock laser system development towards space applications, Sci. Rep., 2016, vol. 6, no. 1, p. 33973. https://doi.org/10.1038/srep33973

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the group of Precision optics and vacuum technologies of the Troitsk Special Division of the Lebedev Physical Institute in the person of E.V. Filonov for sputtering of high-reflective coatings of mirrors.

Funding

This study was supported by the Russian Science Foundation, project no. 19-72-10166.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Vishnyakova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kazantsev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishnyakova, G.A., Kryuchkov, D.S., Voronova, T.A. et al. Thermo-Optical Bistability in a Compact High-Q Cavity at a Wavelength of 1550 nm. Bull. Lebedev Phys. Inst. 50, 385–390 (2023). https://doi.org/10.3103/S1068335623090075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623090075

Keywords:

Navigation