Skip to main content
Log in

A Study of Thermodynamic and Elastic Properties of Nanosized Diamond Single Crystals by the Classical Molecular Dynamics Method

  • PRODUCTION, STRUCTURE, PROPERTIES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

The results of studying the thermodynamic and elastic properties of nanosized diamond single crystals by the method of classical molecular dynamics are presented. A number of structural models are considered, the choice of the empirical interatomic interaction potential is substantiated, and schemes for calculating the cohesive and surface energy and the elastic moduli at the macroscopic and nanoscopic levels are outlined. A parametric analysis of the models in the static approximation is performed, the patterns of the effect of the diamond nanocrystal size and shape on the thermodynamic and elastic properties are determined and compared with the published data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Landau, L.D. and Lifshits, E.M., Teoreticheskaya fizika. Statisticheskaya fizika (Theoretical Physics. Statistical Physics), Moscow: Nauka, 1976, 3rd ed, part I.

  2. Petrov, Yu.I., Fizika malykh chastits (Physics of Small Particles), Moscow: Nauka, 1982.

  3. Ōsawa, E., Single-nanobucky diamond particles: Synthesis strategies, characterization methodologies and emerging applications, in Nanodiamonds: Applications in Biology and Nanoscale Medicine, Ho, D., Ed., Springer, 2010.

    Google Scholar 

  4. Danilenko, V.V., On the history of the discovery of nanodiamond synthesis, Phys. Solid State, 2004, vol. 46, no. 4, pp. 595–599.

    Article  CAS  Google Scholar 

  5. Sinteticheskie sverkhtverdye materialy (Synthetic Superhard Materials), 3 vols., Novikov, N.V., Ed., Kyiv: Naukova Dumka, 1986.

    Google Scholar 

  6. Handbook of Industrial Diamonds and Diamond Films, Prelas, M.A., Popovici, M.A., and Bigelow, L.K., Eds., CRC Press, 1997.

    Google Scholar 

  7. Adiga, S.P., Curtiss, L.A., and Gruen, D.M., Molecular dynamics simulations of nanodiamond graphitization, in Nanodiamonds: Applications in Biology and Nanoscale Medicine, Ho, D., Ed., Springer, 2010.

    Google Scholar 

  8. Shenderova, O.A. and Gruen, D.M., Ultrananocrystalline Diamond. Synthesis, Properties and Applications, Elsevier, 2012, 2nd ed.

    Google Scholar 

  9. Nanodiamonds: Advanced Material Analysis, Properties and Applications, Arnault, J.-C., Ed., Elsevier, 2017.

  10. Nozhkina, A.V. and Kostikov, V.I., Surface energy of diamond and graphite, in Porodorazrushayushchii i metalloobrabatyvayushchii instrument–tekhnika i tekhnolohii ego izgotovleniya i primeneniya: Sb. nauch. tr. (Rock Cutting and Metalworking Tools–Equipment and Technologies for Its Manufacture and Use: Collection of Scientific Works), Kyiv: Bakul Institute for Superhard Materials of National Academy of Science of Ukraine, 2017, vol. 20, pp. 161–167.

  11. Gayk, F., Ehrens, J., Heitmann, T., Vorndamme, P., Mrugalla, A., and Schnack, J., Young’s moduli of carbon materials investigated by various classical molecular dynamics schemes, Phys. E (Amsterdam, Neth.), 2018, vol. 99, pp. 215–219.

    Google Scholar 

  12. Skrobas, K., Stefanska-Skrobas, K., Stelmakh, S., Gierlotka, S., and Palosz, B., Surface free energy of diamond nanocrystals—a molecular dynamics study of its size dependence, Phys. Chem. Chem. Phys., 2021, vol. 23, pp. 11075–11081.

    Article  CAS  Google Scholar 

  13. Jacobson, P. and Stoupin, S., Thermal expansion coefficient of diamond in a wide temperature range, Diamond Relat. Mater, 2019, vol. 97, p. 107469.

  14. McSkimin, H.J. and Andreatch, Р., Jr., Elastic moduli of diamond as a function of pressure and temperature, J. Appl. Phys., 1972, vol. 43, pp. 2944–2948.

    Article  CAS  Google Scholar 

  15. Plimpton, J.J., Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 1995, vol. 117, pp. 1−19.

    Article  CAS  Google Scholar 

  16. Tomas, C., Suarez-Martinez, I., and Marks, N.A., Graphitization of amorphous carbons: A comparative study of interatomic potentials, Carbon, 2016, vol. 109, pp. 681–693.

    Article  Google Scholar 

  17. Thompson, A.P., Plimpton, S.J., and Mattson, W., General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions, J. Chem. Phys., 2009, vol. 131, p. 154107.

    Article  Google Scholar 

  18. Barnard, A.S. and Russo, S.P., Development of an improved Stillinger–Weber potential for tetrahedral carbon using ab initio (Hartree-Fock and MP2) methods, Mol. Phys., 2002, vol. 100, pp. 1517–1525.

    Article  CAS  Google Scholar 

  19. Tersoff, J., Empirical interatomic potential for carbon, with applications to amorphous carbon, Phys. Rev. Lett., 1988, vol. 61, pp. 2879–2882.

    Article  CAS  Google Scholar 

  20. Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart, S.J., Ni, B., and Sinnott, S.B., A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys.: Condens. Matter., 2002, vol. 14, pp. 783–802.

    CAS  Google Scholar 

  21. Stuart, S.J., Tutein, A.B., and Harrison, J.A., A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys., 2000, vol. 112, pp. 6472–6486.

    Article  CAS  Google Scholar 

  22. O’Connor, T.C., Andzelm, J., and Robbins, M.O., AIREBO-M: A reactive model for hydrocarbons at extreme pressures, J. Chem. Phys., 2015, vol. 142, p. 024903.

    Article  Google Scholar 

  23. Lee, B.-J. and Lee, J.W., A modified embedded atom method interatomic potential for carbon, Calphad, 2005, vol. 29, pp. 7–16.

    Article  CAS  Google Scholar 

  24. Lucas, G., Bertolus, M., and Pizzagalli, L., An environment-dependent interatomic potential for silicon carbide: Calculation of bulk properties, high-pressure phases, point and extended defects, and amorphous structures, J. Phys.: Condens. Matter., 2010, vol. 22, p. 035802.

    CAS  Google Scholar 

  25. Yin, M.T. and Cohen, M.L., Structural theory of graphite and graphitic silicon, Phys. Rev. B., 1984, vol. 29, рр. 6996–6998.

    Article  CAS  Google Scholar 

  26. Kittel, S., Introduction to Solid State Physics, Wiley, 2005, 8th ed.

    Google Scholar 

  27. Lindsay, L. and Broido, D.A., Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B, 2010, vol. 81, p. 205441.

    Article  Google Scholar 

  28. Ostrovskaya, L., Perevertailo, V., Ralchenko, V., Dementjev, A., and Loginova, O., Wettability and surface energy of oxidized and hydrogen plasma-treated diamond films, Diamond Relat. Mater., 2002, vol. 11, pp. 845–850.

    Article  CAS  Google Scholar 

  29. Harkins, W.D., Energy relations of surface of solids, J. Chem. Phys., 1942, vol. 10, pp. 268–272.

    Article  CAS  Google Scholar 

  30. Aleshin, V.G., Smekhnov, A.A., Bogatyreva, G.P., and Kruk, V.B., Khimiya poverkhnosti almaza (Diamond Surface Chemistry), Kyiv: Naukova Dumka, 1990.

  31. Halicioglu, T., Calculation of surface energies for low index planes of diamond, Surf. Sci. Lett., 1991, vol. 259, pp. L714–L718.

    CAS  Google Scholar 

  32. Furthmüller, J., Hafner, J., and Kresse, G., Dimer reconstruction and electronic surface states on clean and hydrogenated diamond (100) surfaces, Phys. Rev. B, 1996, vol. 53, pp. 7334–7351.

    Article  Google Scholar 

  33. Pierre, M., Bruno, M., Manfredotti, C., Nestola, F., Prencipe, M., and Manfredotti, C., The (100), (111) and (110) surfaces of diamond: An ab initio B3LYP study, Mol. Phys.: Int. J. Interface Chem. Phys., 2014, vol. 112, pp. 1030–1039.

    Article  Google Scholar 

  34. Yin, W.-J., Chen, Y.-P., Xie, Y.-E., Liu, L.-M., and Zhang, S.B., Low-surface energy carbon allotrope: The case for bcc-C6, Phys. Chem. Chem. Phys., 2015, vol. 17, pp. 14083–14087.

    Article  CAS  Google Scholar 

  35. Hernandez, E., Goze, C., Bernier, P., and Rubio, A., Elastic properties of C and BxCyNz composite nanotubes, Phys. Rev. Lett., 1998, vol. 80, pp. 4502–4505.

    Article  CAS  Google Scholar 

  36. Kushch, V.I., Atomistic vs. continuum models of nanoporous elastic solid: Stress fields, size-dependent effective stiffness and surface constants, Mech. Mater., 2022, vol. 166, p. 104223.

    Article  Google Scholar 

  37. Tadmor, E.B., Elliott, R.S., Sethna, J.P., Miller, R.E., and Becker, C.A., The potential of atomistic simulations and the knowledgebase of interatomic models, JOM: J. Miner., Metals Mater. Soc., 2011, vol. 63, pp. 1–17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. І. Kushch.

Ethics declarations

The authors declare that they have no conflicts of ineterst.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushch, V.І. A Study of Thermodynamic and Elastic Properties of Nanosized Diamond Single Crystals by the Classical Molecular Dynamics Method. J. Superhard Mater. 44, 229–239 (2022). https://doi.org/10.3103/S1063457622040049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457622040049

Keywords:

Navigation