Skip to main content
Log in

Spectral Properties of Aluminum Phthalocyanine Immobilized on Silver Nanowire Substrates

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Raman spectroscopy is used to study aluminum phthalocyanine immobilized on the surfaces of silver nanowires. There is a redistribution of intensity upon exposure to low- and high-power laser radiation, testifying to the excitation of different vibrational modes. The promise of studying the spectral properties of hybrid structures based on phthalocyanines is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Fourati, N., Seydou, M., Zerrouki, C., et al., ACS Appl. Mater. Interfaces, 2014, vol. 6, no. 24, 22378.

    Article  Google Scholar 

  2. Drain, C.M., Bazzan, G., Milicic, C.T., et al., Israel J. Chem., 2005, vol. 45, p. 255.

    Article  Google Scholar 

  3. Sul’timova, N.B., Levin, P.P., Lobanov, A.V., and Muzafarov, A.M., High Energy Chem., 2013, vol. 47, no. 3, p. 98.

    Article  Google Scholar 

  4. Lobanov, A.V., Golubeva, E.N., and Mel’nikov, M.Ya., Mendeleev Commun., 2010, vol. 20, no. 6, p. 343.

    Article  Google Scholar 

  5. Lozinova, T.A., Lobanov, A.V., and Lander, A.V., Russ. J. Phys. Chem. A, 2015, vol. 89, no. 8, p. 1492.

    Article  Google Scholar 

  6. Lobanov, A.V., Kholuiskaya, S.N., and Komissarov, G.G., Khim. Fiz., 2004, vol. 23, no. 5, p. 44.

    Google Scholar 

  7. Huang, Z., Chen, Y., Zhang, J., et al., ACS Appl. Mater. Interfaces, 2021, vol. 13, no. 33, 39934.

    Article  Google Scholar 

  8. Abid, S., Hassine, S.B., Sun, Z., et al., Macromolecules, 2021, vol. 54, no. 14, p. 6726.

    Article  ADS  Google Scholar 

  9. Güzel, E., Atmaca, G.Y. Kuznetsov, A.E., et al., ACS Appl. Bio Mater., 2022, vol. 5, no. 3, p. 1139.

    Article  Google Scholar 

  10. Wang, R., Kim, K.-H., Yoo, J., et al., ACS Nano, 2022, vol. 16, no. 2, p. 3045.

    Article  Google Scholar 

  11. Taratula, O., Schumann, C., Naleway, M.A., et al., Mol. Pharm., 2013, vol. 10, no. 10, p. 3946.

    Article  Google Scholar 

  12. Madamsetty, V.S., Paul, M.K., Mukherjee, A., et al., ACS Biomater. Sci. Eng., 2020, vol. 6, no. 1, p. 167.

    Article  Google Scholar 

  13. Udartseva, O.O., Lobanov, A.V., Andreeva, E.R., et al., Russ. Chem. Bull., 2016, vol. 65, p. 277.

    Article  Google Scholar 

  14. Karpova, S.G., Ol’khov, A.A., Krivandin, A.V., et al., Polymer Sci., Ser. A, 2019, vol. 61, no. 1, p. 70.

    Article  Google Scholar 

  15. Gradova, M.A., Zhdanova, K.A., Bragina, N.A., et al., Russ. Chem. Bull., 2015, vol. 64, no. 4, p. 806.

    Article  Google Scholar 

  16. Lobanov, A.V., Nevrova, O.V., Ilatovskii, V.A., et al., Macroheterocycles, 2011, vol. 4, no. 2, p. 132.

    Article  Google Scholar 

  17. Chudinov, A.V., Rumyantseva, V.D., Lobanov, A.V., et al., Russ. J. Bioorg. Chem., 2004, vol. 30, no. 1, p. 89.

    Article  Google Scholar 

  18. Caplins, B.W., Suich, D.E., Shearer, A.J., and Harris, C.B., J. Phys. Chem. Lett., 2014, vol. 5, no. 10, p. 1679.

    Article  Google Scholar 

  19. Ichihara, M., Miida, M., Mohr, B., and Ohta, K., J. Porphyrins Phthalocyanines, 2006, vol. 10, p. 1145.

    Article  Google Scholar 

  20. Tsivadze, A.Yu., Nosikova, L.A., and Kudryashova, Z.A., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 2, p. 135.

    Article  Google Scholar 

  21. Smirnova, A.I., Giricheva, N.I., Soldatova, K.M., and Usol’tseva, N.V., Zhidk. Krist. Ikh Prakt. Ispol’z., 2016, vol. 16, no. 4, p. 42.

    Google Scholar 

  22. Usol’tseva, N.V., Smirnova, A.I., Kazak, A.V., et al., Zhidk. Krist. Ikh Prakt. Ispol’z., 2015, vol. 15, no. 4, p. 56.

    Google Scholar 

  23. Zhang, X.-F. and Wang, J., J. Phys. Chem. A, 2011, vol. 115, no. 31, p. 8597.

    Article  Google Scholar 

  24. Lee, M.H., Dunietz, B.D., and Geva, E., J. Phys. Chem. Lett., 2014, vol. 5, no. 21, p. 3810.

    Article  Google Scholar 

  25. Ziminov, A.V., Ramsh, S.M., Spiridonov, I.G., et al., Vestn. St. Petersburg. Gos. Univ., 2009, vol. 4, no. 4, p. 95.

    Google Scholar 

  26. Kozhina, E.P., Bedin, S.A., Nechaeva, N.L., et al., Appl. Sci., 2021, vol. 11, no. 4, p. 1375.

    Article  Google Scholar 

Download references

Funding

This work was performed a part of State Task no. AAAA-A20-120061890084-9 for Moscow Pedagogical State University “Physics of Promising Materials and Nanostructures: Basic Research and Applications in Materials Science, Nanotechnologies, and Photonics.” The authors are members of the RF leading scientific school of the optical spectral nanoscopy of quantum objects and diagnostics of advanced materials, SS-776.2022.1.2. The authors thank Sirius University for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Kitushina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Saetova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitushina, E.V., Kozhina, E.P., Piryazev, A.A. et al. Spectral Properties of Aluminum Phthalocyanine Immobilized on Silver Nanowire Substrates. Bull. Russ. Acad. Sci. Phys. 86, 1478–1482 (2022). https://doi.org/10.3103/S1062873822120140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873822120140

Navigation