Skip to main content
Log in

EMS Induced Desynaptic Male Sterile Lines in Buckwheat (Fagopyrum esculentum Moench)

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Cytological analysis of EMS (Ethyl methane sulphonate) treated population of Fagopyrum esculentum revealed an abnormal behaviour of microsporogenesis that affected the meiotic events resulting in the formation of abnormal meiotic products that prevent the gamete formation and impair pollen fertility. The two desynaptic mutants were recorded, showing distinctive variations in the morphology as compared to the control plants. The seeds of Fagopyrum esculentum were treated with EMS solution in different concentrations such as 0.1, 0.3 and 0.5% using potassium phosphate buffer (pH 7) for 5 h. During cytological investigation, 0.5% concentration of EMS enhanced the univalent frequency per cell at diakinesis/Metaphase I, respectively along with unequal segregation at anaphase I which is pronounced to be higher in contrast to bivalents. Because of higher frequency of univalents desynapsis has been categorized as medium-strong type. EMS induced desynaptic plants showed abnormal meiotic behaviour leading to pollen sterility and no seed setting was recorded. The chemical mutagen has acted on recombination genes system which is accountable for synapsis and chiasma formation and further disrupted the complete chiasma assembly. The desynaptic mutant is a potential tool that provides genetic information on the maintenance of chiasma and the study offers the possibility for formation of aneuploids production which may be exploited successfully through chemical mutagenesis in breeding programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Pagliarini, M.S., Calisto, V., Fuzinatto, V.A., Message, H.J., Mendes-Bonato, A.B., Boldrini, K.R., and Valle, C.B.D., Desynapsis and precocious cytokinesis in Brachiaria humidicola (Poaceae) compromise meiotic division, Indian Acad. Sci., 2008, vol. 87, no. 1, pp. 27–31.

    Google Scholar 

  2. Tsubouchi, H. and Roeder, G.S., The importance of genetic recombination for fidelity of chromosome pairing in meiosis, Dev. Cell, 2003, vol. 5, no. 6, pp. 915–925.

    Article  CAS  PubMed  Google Scholar 

  3. Sharma, S.K., Kumaria, S., Tandon, P., and Rao, S.R., Synaptic variation derived plausible cytogenetical basis of rarity and endangeredness of endemic Mantisia spathulata Schult, Nucleus, 2011, vol. 54, no. 2, pp. 85–93.

    Article  Google Scholar 

  4. Franklin, A.E., McElver, J., Sunjevaric, I., Rothstein, R., and Borwen, B., Three dimensional microscopy of the Rad 51 recombination protein during meiotic prophase, Plant Cell, 1999, vol. 11, pp. 809–824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pazy, B. and Plitmann, U., Asynapsis in Cistanche tubulosa (Orobanchceae), Plant Syst. Evol., 1996, vol. 3, pp. 201–271.

    Google Scholar 

  6. Sosnikhina, S.P., Mikhailova, E.I., Tikholiz, O.A., and Priyatkina, S.N., Smirnov VG., Voilkov AV., et al., Genetic collection of meiotic mutants of rye Secale cereal L., Russ. J. Genet., 2005, vol. 41, no. 10, pp. 1071–1080.

    Article  CAS  Google Scholar 

  7. Jenkins, G. and Okomus, A., Indiscriminate synapsis in achiasmate Allium fistulosum L.(Liliaceae), J. Cell Sci., 1992, vol. 103, pp. 414–422.

    Google Scholar 

  8. Maguire, M.P. and Riess, ParedesA.M., Evidence from a maize desynaptic mutant points to a probable role of synaptinemal complex central region components in provision for subsequent chiasma maintenance, Genome, 1993, vol. 36, no. 5, pp. 797–807.

    Article  CAS  PubMed  Google Scholar 

  9. Pagliarini, M.S., Souza, V.F., Silva, N., Scapim, C.A., Rodovalho, M., and Faria, M.V., Ms 17: a meiotic mutation causing partial male sterility in a corn silage hybrid, Genet. Mol. Res., 2011, vol. 10, no. 3, pp. 1958–1962.

    Article  CAS  PubMed  Google Scholar 

  10. Cai, X. and Xu, S.S., Meiosis-driven genome variation in plants, Curr. Genom., 2007, vol. 8, no. 3, pp. 151–161.

    Article  CAS  Google Scholar 

  11. Chedda, H.R. and De Wet, J.M.J., Desynapsis in the Bathriochloa hybrids, Proc. Okla. Acad. Sci., 1960, pp. 14–18.

  12. Soost, R.K., Comparative cytology and genetics of asynaptic mutants in Lycopersicon esculentum L., Genetics, 1951, vol. 36, no. 4, pp. 410–434.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Burnham, C.R., Discussion in Cytogenetics, Minneapolis Minn.: Burgess Publ. Co., 1962.

    Google Scholar 

  14. Ratan, P. and Kothiyal, P., Fagopyrum esculentum Moench (common buckwheat) edible plant of Himalayas: a review, Asian J. Pharm. Life Sci., 2011, vol. 1, no. 4, pp. 426–442.

    CAS  Google Scholar 

  15. Joshi, B.D., Status of buckwheat in India, Fagopyrum, 1999, vol. 16, pp. 7–11.

    Google Scholar 

  16. Kreft, I., Fabjan, N., and Yasumoto, K., Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products, Food Chem., 2006, vol. 98, no. 3, pp. 508–512.

    Article  CAS  Google Scholar 

  17. Liu, C.L., Chen, Y.S., Yang, J.H., and Chiang, B.H., Antioxidant activity of tartary (Fagopyrum tartaricum (L.) Gaertn.) and common (Fagopyrum esculentum Moench) buckwheat sprouts, J. Agric. Food Chem., 2008, vol. 56, no. 1, pp. 173–178.

    Article  CAS  PubMed  Google Scholar 

  18. Pullaiah, T., Encyclopaedia of World Medicinal Plants, Regency Publications, New Delhi, 2006, vol. 2, pp. 936–937.

    Google Scholar 

  19. Tang, C., Peng, J., Zhen, D., and Chen, Z., Physicochemical and antioxidant properties of buckwheat (Fagopyrum esculentum Moench) protein hydrolysates, Food Chem., 2009, vol. 115, pp. 672–678.

    Article  CAS  Google Scholar 

  20. Kaul, M.L.H., Male Sterility in Higher Plants, Monographs on Theoretical and Applied Genetics 10, Berlin: Springer Verlag.

  21. Naseem, S. and Kumar, G., Induced desynaptic variation in poppy (Papaver somniferum L.), Crop Breed. Appl. Biotechnol., 2013, vol. 13, no. 4, pp. 363–366.

    Article  Google Scholar 

  22. Prakken, R., Studies of asynapsis in rye, Hereditas, 1943, vol. 71, pp. 475–495.

    Google Scholar 

  23. Bowling, S.E. and Makaroff, C.A., A defect in synapsis causes male sterility in a T-DNA-tagged Arabidopsis thaliana mutant, Plant J., 1997, vol. 11, no. 4, pp. 659–669.

    Article  PubMed  Google Scholar 

  24. Kitada, K. and Omura, T., Genetic control of meiosis in rice Oryza sativa L. Cytogenetical analyses of desynaptic mutants, Jpn. J. Genet., 1983, vol. 58, pp. 567–577.

    Article  Google Scholar 

  25. John, B., Meiosis, Cambridge: Cambridge Univ. Press, 1990.

    Book  Google Scholar 

  26. Maguire, M.P., Is the synaptinemal complex a disjunction machine?, J. Hered., 1995, vol. 86, pp. 330–340.

    Article  CAS  PubMed  Google Scholar 

  27. Miyazaki, W.Y.Orr. and Weaver, T.L., Sister chromatid cohesiveness in mitosis and meiosis, Ann. Rev. Genet., 1994, vol. 28, pp. 167–187.

    Article  CAS  PubMed  Google Scholar 

  28. Maguire, M.P., Evidence for separate genetic control of crossing over and chiasma maintenance in maize, Chromosoma, 1978, vol. 65, no. 2, pp. 173–183.

    Article  Google Scholar 

  29. Koduru, P.R.K. and Rao, M.K., Cytogenetic of synaptic mutants in higher plants, Theor. Appl. Genet., 1981, vol. 59, pp. 197–214.

    Article  CAS  PubMed  Google Scholar 

  30. Dawe, R.K., Meiotic chromosome organization and segregation in plants, Ann. Rev. Plant Physiol. Plant. Mol. Biol., 1998, vol. 49, pp. 371–95.

    Article  CAS  Google Scholar 

  31. Ji, Y.E., Stelly, D.M., Donato, M.D., Goodman, M.M., and Williams, C.G., A candidate recombination modifier gene for Zea mays L., Genetics, 1999, vol. 151, no. 2, pp. 821–830.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Simchen, G. and Stamberg, J., Fine and coarse controls of genetic recombination, Nature, 1969, vol. 222, pp. 329–332.

    Article  CAS  PubMed  Google Scholar 

  33. Kumar, P., Singhal, V.K., Kaur, M., and Gupta, R.C., High pollen sterility and 2n pollen grains in an asynaptic 4x cytotype (2n = 48) of Solanum nigrum L., Cytologia, 2012, vol. 77, no. 3, pp. 333–342.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to NBPGR for providing pure inbred line of seeds of Fagopyrum esculentum. I would like to thanks to my lab members of Naithani Plant Genetics Laboratory for their encouragement and support and also giving some advice for performing experiment and also grateful to the Head of Department, University of Allahabad for providing some necessary help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akanksha Srivastava.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, G., Akanksha Srivastava EMS Induced Desynaptic Male Sterile Lines in Buckwheat (Fagopyrum esculentum Moench). Cytol. Genet. 53, 330–336 (2019). https://doi.org/10.3103/S009545271904008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S009545271904008X

Keywords:

Navigation