Skip to main content
Log in

Phenomenon of evolution of clonal chromosomal abnormalities in childhood acute myeloid leukemia

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

An analysis of chromosomal abnormalities in bone-marrow cells was performed in 116 children with diagnoses of acute myeloid leukemia (AML). The frequency of the evolution of clonal chromosomal abnormalities in AML constituted 42.3%. Quantitative abnormalities of chromosomes 8, 9, and 21, as well as the secondary structural abnormalities in the chromosomal regions 12p12, 9p22, 9q22, 9q34, 11q14–23, and 6q2, were the most abundant. Quantitative abnormalities were registered in 26.7% cases. The basic mechanism of evolution of the leukemic clone contained trisomy, deletions, and monosomy. The frequency of evolution was seven times higher in the age group of up to 2 years and twofold higher in the age group of up to 5 years. The high frequency of evolution at t(15;17)(q22;q22) was established, while its absence was revealed at inv(16)(p13q22). Patients with clonal evolution were characterized by the increased frequency of relapses and earlier death before reaching remission, which might be explained by the severe initial state of those patients. The conception of abnormalities in the evolution of the clone was proposed to occur at certain stages as follows: (1) appearance of balanced rearrangements; (2) trisomy occurrence; (3) loss of chromosomal material. The occurrence of an unbalanced genome during evolution possesses advantages in the clonal proliferate activity and may be related to its response to chemotherapy. An identity in abnormal chromosomal structure was revealed as a result of the comparison of karyotypes during diagnostics and during relapse, which could be evidence of the initial induction of some types of evolution of chromosomal abnormalities in leukemic cells in AML children by the chemical agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Desai, J., Shankar, S., Heinrich, M.C., Fletcher, J.A., Fletcher, C.D., Manola, J., Morgan, J.A., Corless, C.L., George, S., Tuncali, K., and Silverman, S.G., Clonal Evolution of Resistance To Imatinib in Patients with Metastatic Gastrointestinal Stromal Tumors, Clin. Cancer Res., 2007, vol. 13, no. 18, pp. 5398–5405.

    Article  CAS  PubMed  Google Scholar 

  2. Heng, H.H., Stevens, J.B., Liu, G.J., Stevens, J.B., Liu, G., Brenuk, S.W., Ye, K.J., Reddy, P.V., Wu, G.S., Wang, Y.A., Tainsky, M.A., and Ye, C.J., Stochastic Cancer Progression Driven by Non-Clonal Chromosome Aberrations, Cell Physiol., 2006, vol. 208, no. 2, pp. 461–472.

    Article  CAS  Google Scholar 

  3. Patchenko, P., Klepfish, A., Trakhtenbrot, L., Rothman, R., and Rachmilewitz, E.A., Reciprocal Relationship between a pH-Negative Clone with Trisomy 8 Associated with Severe Myelodysplasia and a Ph-Positive Clone Following Imatinib Treatment in a Patient with Accelerated-Phase Chronic Myelogenous Leukemia (CML), Amer. J. Hematol., 2004, vol. 77, no. 4, p. 420.

    Article  Google Scholar 

  4. Flam, M.J., Murty, V.V., Rao, P.H., and Nicols, G.L., Coexistence of Independent Myeloblastic and Philadelphia Chromosome Positive Clones in Patient Treated with Hydroxyurea, Leuk. Res., 2002, vol. 26, no. 4, pp. 417–420.

    Article  Google Scholar 

  5. Picos-Gardenas, V.J., Meza-Espinoza, J.P., Gutierrez-Angulo, M., Esparza-Flores, M.A., Ayala-Madrigal, M.L., Hansmann, J., and Gonzales, G.J., Paternal Isodisomy 7q Secondary 7 at Recurrence in a Down Syndrome Child with Acute Myelogenous Leukemia, Cancer Genet. Cytogenet., 2002, vol. 134, no. 2, pp. 138–141.

    Article  Google Scholar 

  6. Roy, S., Szer, J., Campbell, L.J., and Juncja, S., Sequential Transformation of T (8; 13)-Related Disease: A Case Report, Acta Haematol., 2002, vol. 107, no. 2, pp. 95–97.

    Article  CAS  PubMed  Google Scholar 

  7. Ono, R., Taki, T., Taketani, T., Taniwaki, M., Kobayashi, H., and Hayashi, Y., LCX, Leukemia-Associated Protein with a CXXC Domain, Is Fused To MLL in Acute Myeliod Leukemia with Trilineage Dysplasia Having T(10; 11)(Q32; Q23), Cancer Res., 2002, vol. 62, no. 14, pp. 4075–4080.

    CAS  PubMed  Google Scholar 

  8. Sashida, G., Ito, Y., Nakajima, A., Kawakubo, K., Kuriyama, Y., Yagasaki, F., Bessho, M., and Ohyashiki, K., Multiple Myeloma with Monosomy 13 Developed in Trisomy 13 Acute Myelocytic Leukemia: Numerical Chromosome Abnormality during Chromosomal Segregation Process, Cancer Genet. Cytogenet., 2003, vol. 141, no. 2, pp. 154–156.

    Article  CAS  PubMed  Google Scholar 

  9. Bacher, U., Schnittger, S., Kern, W., Harich, H.D., Schnittger, S., and Haferlach, C., Acute Myeloid Leukemia (AML) with T(8; 21)(Q22; Q22) Relapsing As AML with T(3; 21)(Q26; Q22), Cancer Genet. Cytogenet., 2006, vol. 168, no. 2, pp. 172–174.

    Article  CAS  PubMed  Google Scholar 

  10. Marsden, K.A., Pearse, A.M., Collins, G.G., Ford, D.I., Heard, S., and Kimber, R.I., Acute Leukemia with T(1; 3) (P36; Q21), Evolution to T(1; 3)(P36; Q21), T(14; 17)(Q32; Q21) and Loss of Red Cell A and Le6 Antigenes, Cancer Genet. Cytogenet., 1992, vol. 64, pp. 80–85.

    Article  CAS  PubMed  Google Scholar 

  11. Campiotti, L., Appio, L., Casalone, R., Righi, R., Ageno, W., Solbiati, F., Grandi, A.M., and Venco, A., Acute Myeloid Leukemia with Associated Translocation T(15; 17) and 11q23/MLL Abnormality, Leuk. Lymphoma, 2008, vol. 49, no. 3, pp. 592–595.

    Article  CAS  PubMed  Google Scholar 

  12. Mrozek, K., Heinonen, K., and Bloomfield, C.D., Clinical Importance of Cytogenetics in Acute Leukemia, Best Pract. Res. Clin. Haematol., 2001, vol. 14, no. 1, pp. 14–47.

    Article  Google Scholar 

  13. Grimwade, D., Walker, H., Oliver, F., Wheatley, K., Harrison, C., Harrison, G., Rees, J., Hann, I., Steven, S.R., Burnett, A., and Goldstone, A., The Importance of Diagnostic Cytogenetics on Outcome in AML: Analysis of 1.612 Patients Entered Into the AML10 Trial. The Medical Research Council Adult and Children’s Leukemia Working Parties, Blood, 1998, vol. 92, no. 7, pp. 2322–2333.

    CAS  PubMed  Google Scholar 

  14. Manola, K.N., Georgakakos, V.N., Margaritis, D., Stavropoulou, C., Panos, C., Kotsianidis, I., Pantelias, G.F., and Sambani, C., Disruption of the ETV6 Gene as a Consequence of the Rare Translocation (12; 12)(P13; Q13) in Treatment-Induced Acute Myeloid Leukemia after Breast Cancer, Cancer Genet. Cytogenet., 2008, vol. 180, no. 1, pp. 37–42.

    Article  CAS  PubMed  Google Scholar 

  15. Klaus, M., Haferlach, T., Schnittger, S., Kern, W., Hiddemann, W., and Schoch, C., Cytogenetic Profile in De Novo Acute Myeloid Leukemia with FAB Subtypes M0, M1 and M2: Study Based on 652 Cases Analyzed with Morphology, Cytogenetics and Fluorescence in Situ Hybridization, Cancer Genet. Cytogenet., 2004, vol. 155, no. 1, pp. 47–56.

    Article  CAS  PubMed  Google Scholar 

  16. Duell, T., Poleck-Dehlin, B., Schmid, C., Wunderlich, B., Ledderose, G., Mittermuller, J., Kolb, H.J., and Schmetzer, H., Clonal Karyotype Evolution Involving Ring Chromosome 1 with Myelodysplastic Syndrome Subtype RAEB-T Progressing Into Acute Leukemia, Acta Haematol., 2006, vol. 116, no. 2, pp. 131–136.

    Article  CAS  PubMed  Google Scholar 

  17. Olney, H.J., Mitelman, F., Johansson, B., Mrozek, K., Berger, R., and Rowley, J.D., Unique Balanced Chromosome Abnormalities in Treatment-Related Myelodysplastic Syndromes and Acute Myeloid Leukemia: Report from an International Workshop, Genes Chromosome Cancer, 2002, vol. 33, no. 4, pp. 413–423.

    Article  Google Scholar 

  18. Olshanskaya, Y.V., Demidova, I.A., Teurina, N.B., Udovitchenko, R.G., Parovitchnikova, E.N., Domratcheva, E.V., and Savechenko, V.G., Combined Cytogenetic, FISH and RT-PCR Technique in Detection of T(15; 17) and Monitoring of Minimal Residual Disease in Acute Promyelocytic Leukemia, Acute leukemias. 8. Prognostic Factors and Treatment Strategies, 2001, vol. 40, pp. 40–43.

    CAS  Google Scholar 

  19. Fleshman, E.V., Sokova, O.I., Kirechenko, O.P., Konstantinova, L.N., Metelkova, N.F., Popa, A.V., and Shneider, M.M., Complex Karyotype Abnormalities in Padiatric Acute Myeloid Leukemia, Vestn. Ross. Akad. Med. Nauk, 2008, no. 5, pp. 3–7.

  20. Gozzeti, A., Tozzuoli, D., Crupi, R., Pirroya, M.T., Bucalossi, A., Mazzotta, S., and Laura, F., A Case of Adult Acute Myelocytic Leukemia (M5a) with a NearTetraploid Karyotype Characterized by Monosomies 5 and 16, Cancer Genet. Cytogenet., 2004, vol. 150, no. 1, pp. 88–89.

    Article  Google Scholar 

  21. Kojima, K., Imaoka, M., Noguchi, T., Narumi, H., Uchida, N., Sakai, I., Yasukawa, M., and Fujita, S., Hypocellular Acute Promyelocutic Leukemia with a Tetraploid Clone Characterized by Two T(15; 17), Cancer Genet. Cytogenet., 2003, vol. 145, no. 2, pp. 169–171.

    Article  CAS  PubMed  Google Scholar 

  22. Oh, A.H., Park, T.S., Kim, H.H., Chang, C.L., Lee, E.Y., Son, H.C., Chung, J.S., and Cho, G.J., Tetraploid Acute Promyelocytic Leukemia with Double T(15; 17) and PML/RARA Rearrangements Detected by Fluorescence in Situ Hybridization Analysis, Cancer Genet. Cytogenet., 2003, vol. 145, no. 1, pp. 49–53.

    Article  CAS  PubMed  Google Scholar 

  23. Imkie, M., Davis, M.K., Persons, D.L., and Cunnindham, M.T., Biphasic Acute Myeloid Leukemia with Near-Tetraploidy and Immunophenotypic Transformation, Arch. Pathol. Lab. Med., 2004, vol.128, no. 4, pp. 448–451.

    PubMed  Google Scholar 

  24. Xue, Y., He, J., Wang, Y., Guo, Y., Xie, X., He, Y., Chai, Y., and Ruan, Z., Secondary Near-Pentaploidy And/Or Near-Tetraploidy Charactarised by the Duplication of 8; 21 Translocation in the M2 Subtype of Acute Myeloid Leukemia, Int. J. Hematol, 2000, vol. 71, no. 4, pp. 359–365.

    CAS  PubMed  Google Scholar 

  25. Zelante, L., Perla, G., Bodenizza, C., and Greco, M.M., Carotenuto Dallapiccola B. Tetraploidy (92; XXYY) in An Acute Nonlymphocytic Leukemia (M1) Patient Following Autologous Bone Marrow Transplantation, Cancer Genet. Cytogenet., 1989, vol. 36, no. 1, pp. 69–75.

    Article  Google Scholar 

  26. Morita, Y., Takahashi, A., Yamamoto, K., Miki, T., Murakami, N., and Miura, O., Secondary Near-Tetraploidy with Double Der (15) T (15; 17) in Acute Promyelocytic Leukemia in Relapse, Cancer Genet. Cytogenet., 2004, vol. 149, no. 2, pp. 131–136.

    Article  CAS  PubMed  Google Scholar 

  27. Vardiman, J.W., Harris, N.L., and Brunning, R.D., The World Health Organization (WHO) Classification of the Myeloid Neoplasmas, Blood, 2002, vol. 100, no. 7, pp. 2292–2302.

    Article  CAS  PubMed  Google Scholar 

  28. Human Cytogenetics. A Practical Approach. Malignancy and Acquired Abnormalities. Second edition, Rooney, D.E. and Czepulkovsky, B.H., Eds., Oxford: IRL Press at Oxford Univ. Press, 1995.

    Google Scholar 

  29. An International System for Human Cytogenetic Nomenclature. Recommendations of the International Standing Committee on Human Cytogenetic Nomenclature, Eds, Shaffer, G. and Tommerup, N., Eds., London: Karger, 2005.

    Google Scholar 

  30. Andreeva, S.V., Phenomenon of Evolution of Clonal Chromosomal Aberrations in Acute Lymphoblastic Leukemia in Childhood, Ukr. Zhurn. Gematologi Ta Transfuziologi, 2008, no. 4, pp. 5–9.

  31. Harrison, C.J., The Management of Patients with Leukemia: Role of Cytogenetics in This Molecular Era, Br. J. Haematol., 2000, vol. 108, pp. 19–30.

    Article  CAS  PubMed  Google Scholar 

  32. Gruhn, B., Taub, J.W., Ge, Y., Beck, J.F., Zell, R., Hofer, R., Hermann, H.H., Debatin, K.M., and Steinbach, D., Prenatal Origin of Childhood Acute Lymphoblastic Leukemia, Association with Birth Weight and Hyperdiploidy, Leukemia, 2008, vol. 22, no. 9, pp. 1692–1697.

    Article  CAS  PubMed  Google Scholar 

  33. Iyer, J.L., Sait, S.N., Matsui, S., Block, A.W., Barcos, M., Slack, J.L., Wetzler, M., and Baer, M.R., Massive Hyperdiploidy and Tetraploidy in Acute Myelocytic Leukemia and Myelodysplastic Syndrome, Cancer Genet. Cytogenet., 2004, vol. 148, no. 1, pp. 29–34.

    Article  CAS  PubMed  Google Scholar 

  34. Spiekermann, R., Biology of AML with a Normal Karyotype, Acute Leukemias. 11. Prognostic Factors and Treatment Strategies. Febr. 18–22, 2006, Munich, Germany, Ann. Hematol., 2006, vol. 85,Suppl. 1, pp. 107–110.

    Google Scholar 

  35. Mrozek, K., Marcucci, G., Ruppert, A.S., Balduss, C.D., Kolitz, J.E., Larson, R.A., and Bloomfield, C.D., Molecular Heterogeneity and Its Prognostic Significance in Acute Myeloid Leukemia (AML) with Normal Cytogenetics, Ann. Hematol., 2006, vol. 85,Suppl. 1, pp. 114–117.

    Google Scholar 

  36. Nagl, W., Genetics. 1. Replication, Prog. Bot., 1987, vol. 49, pp. 181–191.

    Google Scholar 

  37. Schoch, C., Kohlmann, A., Dugas, M., Kern, W., Scnittger, S., and Haferlach, T., Impact of Trisomy 8 on Expression of Genes Located on Chromosome 8 in Different AML Subgroups, Genes Chromosomes Cancer, 2006, vol. 12, pp. 1164–1168.

    Article  Google Scholar 

  38. Jaju, R.J., Boultwood, J., Oliver, F.J., Kostrzewa, M., Fidler, C., Parker, N., McPherson, J.D., Morris, S.W., Muller, U., Wainscoat, J.S., and Kearney, I., Molecular Cytogenetic Delineation of the Critical Deleted Region in the 5q-Syndrome, Genes Chromosomes Cancer, 1998, vol. 22, pp. 251–256.

    Article  CAS  PubMed  Google Scholar 

  39. Thelander, E.F., Ichimura, K., Circoran, M., Barbany, G., Nordgren, A., Heyman, M., Berglund, M., Mungall, A., Rosenquist, R., Collins, V.P., Grander, D., Larsson, C., and Lagercrantz, S., Characterization of 6q Deletions in B Cell Lymphomas and Children Acute Lymphoblastic Leukemia, Leuk. Lymphoma, 2008, vol. 49, no. 3, pp. 477–487.

    Article  CAS  PubMed  Google Scholar 

  40. Kunakh, V.A., Genomic Variability of Somatic Plant Cells. 1. Variability in Ontogeny, Biopolim. Kletka, 1994, vol. 10, no. 6, pp. 5–35.

    CAS  Google Scholar 

  41. Brodskii, V.Ya. and Uryvaeva, I.M., Kletochnaya poliploidiya. Proliferatsiya i differentsirovka (Cell Polyploidy. Proliferation and Differentiation), Moscow: Nauka, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Andreieva.

Additional information

Original Russian Text © S.V. Andreieva, V.D. Drozdova, N.V. Kavardakova, 2010, published in Tsitologiya i Genetika, 2010, Vol. 44, No. 3, pp. 41–52.

About this article

Cite this article

Andreieva, S.V., Drozdova, V.D. & Kavardakova, N.V. Phenomenon of evolution of clonal chromosomal abnormalities in childhood acute myeloid leukemia. Cytol. Genet. 44, 160–169 (2010). https://doi.org/10.3103/S0095452710030072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452710030072

Keywords

Navigation