Skip to main content
Log in

Tumor-associated macrophages in the prospect of development of targeted anticancer

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The tumor-associated macrophages (TAM) form about 80% of the total stromal leucocytes’ population in solid tumors. TAM multidirectional influence on tumor growth is the consequence of phenotypic and functional heterogeneity of this cell population. The exceptional role of TAM in tumor progression makes them an attractive model for development of the methods of directed antitumor therapy. In this review, the main groups of the antitumor therapy methods, which include the use of TAM, which are directed towards the suppression of tumor angiogenesis, and which are also directed to reactivation of antitumor action of mononuclear phagocytes, are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jeneway, C.A., Travers, P., Walport, M., and Shlomchik, M., Immunology: the Immune System in Health and Disease, New York and London: Garland Publ., 2002.

    Google Scholar 

  2. Stout, R.D. and Suttles, J., Functional Plasticity of Macrophages: Reversible Adaptation to Changing Microenvironments, J. Leuk. Biol., 2004, vol. 76, no. 3, pp. 509–513.

    Article  CAS  Google Scholar 

  3. Laskin, D.L., Weinberger, B., and Laskin, J.D., Functional Heterogeneity in Liver and Lung Macrophages, J. Leuk. Biol., 2001, vol. 70, pp. 163–170.

    CAS  Google Scholar 

  4. Mor, G. and Abrahams, V.M., Potential Role of Macrophages as Immunoregulators of Pregnancy, Reprod. Biol. Endocrinol., 2003, vol. 1, p. 119.

    Article  PubMed  Google Scholar 

  5. Mosser, D.M., The Many Faces of Macrophage Activation, J. Leuk. Biol., 2003, vol. 73, pp. 209–212.

    Article  CAS  Google Scholar 

  6. Mills, C.D., Kinaid, K., Alt, J.M., Heilman, M.J., and Hill, A.M., M-1/M-2 Macrophages and the Th1/Th2 Paradigm, J. Immunol., 2000, vol. 164, pp. 6166–6173.

    PubMed  CAS  Google Scholar 

  7. Martinez, F.O., Sica, A., Mantovani, A., and Locati, M., Macrophage Activation and Polarization, Front. Biosci., 2008, vol. 13, pp. 453–461.

    Article  PubMed  CAS  Google Scholar 

  8. Van Ginderachter, J.A. and Movahedi, K., Hassanzadeh Ghassabeh G., Meerschaut S., Beschin A., Raes G., De Baetselier P. Classical and Alternative Activation of Mononuclear Phagocytes: Picking the Best of Both Worlds for Tumor Promotion, Immunobiology, 2006, vol. 211, nos. 6–8, pp. 487–501.

    Article  PubMed  CAS  Google Scholar 

  9. Kidd, P., Th1/Th2 Balance: the Hypothesis, Its Limitations, and Implications for Health and Disease, Altern. Med. Rev., 2003, vol. 8, no. 3, pp. 223–246.

    PubMed  Google Scholar 

  10. Navratilova, Z., Polymorphisms in CCL2 and CCL5 Chemokines/Chemokine Receptors Genes and Their Association with Diseases, Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub., 2006, vol. 150, no. 2, pp. 191–204.

    PubMed  CAS  Google Scholar 

  11. Ben-Baruch, A., The Multifaceted Roles of Chemokines in Malignancy, Cancer Metas. Rev., 2006, vol. 25, no. 3, pp. 357–371.

    Article  CAS  Google Scholar 

  12. Nesbit, M., Schaider, H., Miller, T.H., and Herlyn, M., Lowlevel Monocyte Chemoattractant Protein-1 Stimulation of Monocytes Leads to Tumor Formation in Nontumorigenic Melanoma Cells, J. Immunol., 2001, vol. 166, pp. 6483–6490.

    PubMed  CAS  Google Scholar 

  13. Raman, D., Baugher, P.J., Thu, Y.M., and Richmond, A., Role of Chemokines in Tumor Growth, Cancer Lett., 2007, vol. 256, no. 2, pp. 137–165.

    Article  PubMed  CAS  Google Scholar 

  14. Ali, S. and Lazennec, G., Chemokines: Novel Targets for Breast Cancer Metastasis, Cancer Metast. Rev., 2007, vol. 26, nos. 3/4, pp. 401–420.

    Article  CAS  Google Scholar 

  15. Koizumi, K., Hojo, S., Akashi, T., Yasumoto, K., and Saiki, I., Chemokine Receptors in Cancer Metastasis and Cancer Cell-Derived Chemokines in Host Immune Response, Cancer Sci., 2007, vol. 98, no. 11, pp. 1652–1658.

    Article  PubMed  CAS  Google Scholar 

  16. Mroczko, B. and Szmitkowski, M., Hematopoietic Cytokines as Tumor Markers, Clin. Chem. Lab. Med., 2004, vol. 42, no. 12, pp. 1347–1354.

    Article  PubMed  CAS  Google Scholar 

  17. Jiang, Y.P., Wu, X.H., Xing, H.Y., and Du, X.Y., Role of CXCL12 in Metastasis of Human Ovarian Cancer, Chin. Med. J. (Engl.), 2007, vol. 120, no. 14, pp. 1251–1255.

    CAS  Google Scholar 

  18. Lamagna, C., Arrand-Kions, M., and Imhof, B.A., Dual Role of Macrophages in Tumor Growth and Angiogenesis, J. Leukocyte Biol., 2006, vol. 80, pp. 705–713.

    Article  PubMed  CAS  Google Scholar 

  19. Espey, M.G., Tumor Macrophage Redox and Effector Mechanisms Associated with Hypoxia, Free. Radic. Biol. Med., 2006, vol. 41, no. 11, pp. 621–628.

    Google Scholar 

  20. Knowles, H.J. and Harris, A.L., Macrophages and the Hypoxic Tumour Microenvironment, Front. Biosci., 2007, vol. 12, pp. 4298–4314.

    Article  PubMed  CAS  Google Scholar 

  21. Porta, C., Subhra, Kumar B., Larghi, P., Rubino, L., Mancino, A., and Sica, A., Tumor Promotion by Tumor Associated Macrophages, Adv. Exp. Med. Biol., 2007, vol. 604, pp. 67–86.

    Article  PubMed  Google Scholar 

  22. Djavaheri-Mergny, M., Amelotti, M., Mathieu, J., Besançon, F., Bauvy, C., and Codogno, P., Regulation of Autophagy by NFkappaB Transcription Factor and Reactive Oxygen Species, Autophagy, 2007, vol. 3, no. 4, pp. 390–392.

    PubMed  CAS  Google Scholar 

  23. Chen, Y., McMillan-Ward, E., Kong, J., Israels, S.J., and Gibson, S.B., Oxidative Stress Induces Autophagic Cell Death Independent of Apoptosis in Transformed and Cancer Cells, Cell Death Diff., 2008, vol. 15, no. 1, pp. 171–182.

    Article  CAS  Google Scholar 

  24. Kiffin, R., Bandyopadhyay, U., and Cuervo, A.M., Oxidative Stress and Autophagy, Antioxid Redox Signal, 2006, vol. 8, nos. 1/2, pp. 152–162.

    Article  PubMed  CAS  Google Scholar 

  25. Hayakawa, Y. and Smyth, M.J., Innate Immune Recognition and Suppression of Tumors, Adv. Cancer Res., 2006, vol. 95, pp. 293–322.

    Article  PubMed  CAS  Google Scholar 

  26. Airley, R.E. and Mobasheri, A., Hypoxic Regulation of Glucose Transport, Anaerobic Metabolism and Angiogenesis in Cancer: Novel Pathways and Targets for Anticancer Therapeutics, Chemotherapy, 2007, vol. 53, no. 4, pp. 233–256.

    Article  PubMed  CAS  Google Scholar 

  27. Brahimi-Horn, M.C., Chicle, J., and Pouysségur, J., Hypoxia and Cancer, J. Mol. Med., 2007, vol. 85, no. 12, pp. 1301–1307.

    Article  PubMed  Google Scholar 

  28. Mizukami, Y., Kohgo, Y., and Chung, D.C., Hypoxia Inducible Factor-1 Independent Pathways in Tumor Angiogenesis, Clin. Cancer Res., 2007, vol. 13, no. 19, pp. 5670–5674.

    Article  PubMed  CAS  Google Scholar 

  29. Jin, S., DiPaola, R.S., Mathew, R., and White, E., Metabolic Catastrophe as a Means to Cancer Cell Death, J. Cell Sci., 2006, vol. 120, no. 3, pp. 379–383.

    Article  CAS  Google Scholar 

  30. Van der Bij, G.L., Oosterling, S.J., Meijer, S., Beelen, R.H., and Van Gmond, M., The Role of Macrophages in Tumor Development, Cell Oncol., 2005, vol. 27, pp. 203–213.

    PubMed  Google Scholar 

  31. Shin, J.-Y., Yuan, A., Chen, J.J.-W., and Yang, P.-C., Tumor-Associated Macrophages: Its Role in Cancer Invasion and Metastasis, J. Cancer Mol., 2006, vol. 2, no. 3, pp. 101–106.

    Google Scholar 

  32. Lewis, C.E. and Pollard, J.W., Distinct Role of Macrophages in Different Tumor Microenvironment, Cancer Res., 2006, vol. 66, no. 2, pp. 605–612.

    Article  PubMed  CAS  Google Scholar 

  33. Haremann, T., Wilson, J., Burke, F., Kulbe, H., Li, N.F., Plüddemann, A., Charles, K., Gordon, S., and Balkwill, F.R., Ovarian Cancer Polarize Macrophages toward a Tumor-Associated Phenotype, J. Immunol., 2006, vol. 176, pp. 5023–5032.

    Google Scholar 

  34. Iessi, E., Marino, M.L., Lozupone, F., Fais, S., and De Milito, A., Tumor Acidity and Malignancy: Novel Aspects in the Design of Anti-Tumor Therapy, Cancer Therapy, 2008, vol. 6, pp. 55–66.

    CAS  Google Scholar 

  35. Pistoia, V., Morandi, F., Wang, X., and Ferrone, S., Soluble HLA-G: Are They Clinically Relevant?, Semin Cancer Biol., 2007, vol. 17, no. 6, pp. 469–479.

    Article  PubMed  CAS  Google Scholar 

  36. Mellor, A.L. and Munn, D.H., Creating Immune Privilege: Active Local Suppression That Benefits Friends, but Protects Foes, Nat. Rev. Immunol., 2008, vol. 8, no. 1, pp. 74–80.

    Article  PubMed  CAS  Google Scholar 

  37. Debatin, K.M., Apoptosis Pathways in Cancer and Cancer Therapy, Cancer Immunol. Immunother., 2004, vol. 53, no. 3, pp. 153–159.

    Article  PubMed  Google Scholar 

  38. Zhang, L. and Fang, B., Mechanisms of Resistance To TRAIL-Induced Apoptosis in Cancer, Cancer Gene Ther., 2005, vol. 12, no. 3, pp. 228–237.

    Article  PubMed  CAS  Google Scholar 

  39. Folkman, J., Angiogenez, Annu, Rev. Med., 2006, vol. 57, pp. 1–18.

    Article  CAS  Google Scholar 

  40. Folkman, J., Tumor Angiogenesis: Therapeutic Implications, N. Engl. J. Med., 1971, vol. 285, pp. 1182–1186.

    PubMed  CAS  Google Scholar 

  41. Naumov, G.N., Akslen, L.A., and Folkman, J., Role of Angiogenesis in Human Tumor Dormancy: Animal Models of the Angiogenic Switch, Cell Cycle, 2006, vol. 5, no. 16, pp. 1779–1787.

    PubMed  CAS  Google Scholar 

  42. Narazaki, M. and Tosato, G., Tumor Cell Populations Differ in Angiogenic Activity: A Model System for Spontaneous Angiogenic Switch Can Tell Us Why, J. Natl. Cancer Ins., 2006, vol. 98, no. 5, pp. 294–295.

    Google Scholar 

  43. Ailles, L.E. and Weissman, I.L., Cancer Stem Cells in Solid Tumors, Curr. Opin. Biotechnol., 2007, vol. 18, no. 5, pp. 460–466.

    Article  PubMed  CAS  Google Scholar 

  44. Spillane, J.B. and Henderson, M.A., Cancer Stem Cells: a Review, ANZ J. Surg., 2007, vol. 77, no. 6, pp. 464–468.

    Article  PubMed  Google Scholar 

  45. Rapp, U.R., Ceteci, F., and Schreck, R., Oncogene-Induced Plasticity and Cancer Stem Cells, Cell Cycle, 2008, vol. 77, no. 1, pp. 45–51.

    Google Scholar 

  46. Lin, E.Y., Li, J.F., Gnatovskiy, L., Deng, Y., Zhu, L., Grzesic, D.A., Qian, H., Xue, X., and Pollard, J.W., Macrophages Regulate the Angiogenic Switch in a Mouse Model of Breast Cancer, Cancer Res., 2006, vol. 66, no. 23, pp. 11238–11246.

    Article  PubMed  CAS  Google Scholar 

  47. Crowther, M., Brown, N.J., Bishop, E.T., and Lewis, C.E., Microenvironmental Influence on Macrophage Regulation of Angiogenesis in Wounds and Malignant Tumors, J. Leukocyte Biol., 2001, vol. 70, pp. 478–490.

    PubMed  CAS  Google Scholar 

  48. Papetti, M. and Herman, I.M., Mechanisms of Normal and Tumor-Derived Angiogenesis, AJP Cell Physiol., 2002, vol. 282, pp. 947–963.

    Google Scholar 

  49. Indraccolo, S., Stievano, L., Minuzzo, S., Tosello, V., Esposito, G., Piovan, E., Zamarchi, R., Chieco-Bianchi, L., and Amadori, A., Interruption of Tumor Microenvironment, Proc. Nat. Acad. Sci. USA, 2006, vol. 103, no. 11, pp. 4216–4221.

    Article  PubMed  CAS  Google Scholar 

  50. Naumov, G.N., Bender, E., Zurakovski, D., Kang, S.-Y., Sampson, D., Flynn, E., Watnick, R.S., Straume, O., Akslen, L.A., Folkman, J., and Almog, N., A Model of Human Tumor Dormancy: An Angiogenic Switch from the Nonangiogenic Phenotype, J. Natl. Cancer Inst., 2006, vol. 98, no. 5, pp. 316–325.

    Article  PubMed  Google Scholar 

  51. Noonan, D.M., De Lerma Barbaro A., Vannini, N., Mortara, L., and Albini, A., Inflammation, Inflammatory Cells and Angiogenesis: Decisions and Indecisions, Cancer Metast. Rev., 2008, vol. 27, no. 1, pp. 31–40.

    Article  Google Scholar 

  52. Porta, C., Subhra Kumar, B., Larghi, P., Rubino, L., Mancino, A., and Sica, A., Tumor Promotion by Tumor-Associated Macrophages, Adv. Exp. Med. Biol., 2007, vol. 604, pp. 67–86.

    Article  PubMed  Google Scholar 

  53. Magdolen, V., Krüger, A., Sato, S., Nagel, J., Sperl, S., Reuning, U., Rettenberger, P., Magdolen, U., and Schmitt, M., Inhibition of the Tumor-Associated Urokinase-Type Plasminogen Activation System: Effects of High-Level Synthesis of Soluble Urokinase Receptor in Ovarian and Breast Cancer Cells in Vitro and in Vivo, Recent Results Cancer Res., 2003, vol. 162, pp. 43–63.

    PubMed  CAS  Google Scholar 

  54. Ge, Y. and Elghtany, M.T., Urokinase Plasminogen Activator Receptor (CD87): Something Old, Something New, Lab. Hematol., 2003, vol. 9, no. 2, pp. 67–71.

    PubMed  Google Scholar 

  55. Tang, D.G. and Conti, C.J., Endothelial Cell Development, Vasculogenesis, Angiogenesis, and Tumor Neovascularization: An Update, Semin. Thromb. Hemost., 2004, vol. 30, no. 1, pp. 109–117.

    Article  PubMed  Google Scholar 

  56. Patan, S., Vasculogenesis and Angiogenesis, Cancer Treat. Res., 2004, vol. 117, pp. 3–32.

    PubMed  CAS  Google Scholar 

  57. Bouis, D., Kusumanto, Y., Meijer, C., Mulder, N.H., and Hospers, G.A., A Review on Pro- and Anti-Angiogenic Factors as Targets of Clinical Intervention, Pharmacol. Res., 2006, vol. 53, no. 2, pp. 89–103.

    Article  PubMed  CAS  Google Scholar 

  58. Distler, J.H., Hirth, A., Kurowska-Stolarska, M., Gay, R.E., Gay, S., and Distler, O., Angiogenic and Angiostatic Factors in the Molecular Control of Angiogenesis, J. Nucl. Med., 2003, vol. 47, no. 3, pp. 149–161.

    CAS  Google Scholar 

  59. Charalambous, C., Ren, L.B., Su, Y.S., Milan, J., Chen, T.C., and Hofman, F.M., Interleukin-8 Differentially Regulates Migration of Tumor-Associated and Normal Human Brain Endothelial Cells, Cancer Res., 2005, vol. 65, pp. 10347–10354.

    Article  PubMed  CAS  Google Scholar 

  60. Brat, D.J., Bellail, A.C., and Van Meir, E.G., The Role of Interleukin-8 and Its Receptors in Gliomagenesis and Tumoral Angiogenesis, Neuro Oncol., 2005, vol. 7, no. 2, pp. 122–133.

    Article  PubMed  CAS  Google Scholar 

  61. Li, A., Dubey, S., Varney, M.L., Dave, B.J., and Singh, R.K., IL-8 Directly Enhanced Endothelial Cell Survival, Proliferation, and Matrix Metalloproteinases Production and Regulated Angiogenesis, J. Immunol., 2003, vol. 170, pp. 3369–3376.

    PubMed  CAS  Google Scholar 

  62. Abramsson, A., Berlin, Ö., Papayan, H., Paulin, D., Shani, M., and Betsholtz, C., Analysis of Mural Cell Recruitment to Tumor Vessels, Circulation, 2002, vol. 105, pp. 112–117.

    Article  PubMed  CAS  Google Scholar 

  63. Aias, J.I., Aller, M.A., and Arias, J., Cancer Cell: Using Inflammation to Invade the Host, Mol. Cancer, 2007, vol. 6, p. 29.

    Article  CAS  Google Scholar 

  64. Lugini, L., Matarrese, P., Tinari, A., Lozupone, F., Federici, C., Iessi, E., Gentile, M., Luciani, F., Parmiani, G., Rivoltini, L., Malorni, W., and Fais, S., Cannibalism of Live Lymphocytes by Human Metastatic But Not Primary Melanoma Cells, Cancer Res., 2006, vol. 66, pp. 3629–3638.

    Article  PubMed  CAS  Google Scholar 

  65. Helming, L. and Gordon, S., The Molecular Basis of Macrophage Fusion, Immunobiology, 2007, vol. 212, nos. 9/10, pp. 785–793.

    PubMed  CAS  Google Scholar 

  66. Condeelis, J. and Pollard, J.W., Macrophages: Obligate Partners for Tumor Cell Migration, Invasion, and Metastasis, Cell, 2006, vol. 124, no. 2, pp. 263–266.

    Article  PubMed  CAS  Google Scholar 

  67. Vingery, A., Macrophage Fusion: Are Somatic and Cancer Cells Possible Partners?, Trends Cell Biol., 2005, vol. 15, no. 4, pp. 188–193.

    Article  CAS  Google Scholar 

  68. Mochizuki, S. and Okada, Y., ADAMs in Cancer Cell Proliferation and Progression, Cancer Sci., 2007, vol. 98, no. 5, pp. 621–628.

    Article  PubMed  CAS  Google Scholar 

  69. Lin, C.Y., Lin, C.J., Chen, K.H., Wu, J.C., Huang, S.H., and Wang, S.M., Macrophage Activation Increases the Invasive Properties of Hepatoma Cells by Destabilization of the Adherens Junction, FEBS Lett., 2006, vol. 580, no. 13, pp. 3043–3050.

    Article  CAS  Google Scholar 

  70. Zavadil, J. and Bettinger, E.P., TGF-Beta and Epithelial-to-Mesenchymal Transitions, Oncogene, 2005, vol. 24, no. 37, pp. 5764–5774.

    Article  PubMed  CAS  Google Scholar 

  71. Luo, Y., Zhou, H., Krueger, J., Kaplan, C., Lee, S.H., Dolman, C., Markowitz, D., Wu, W., Liu, C., Reisfeld, R.A., and Xiang, R., Targeting Tumor-Associated Macrophages As a Novel Strategy Against Breast Cancer, J. Clin. Invest., 2006, vol. 116, no. 8, pp. 2132–2141.

    Article  PubMed  CAS  Google Scholar 

  72. Demidova, T.N. and Hamblin, M.R., Macrophage-Targeted Photodynamic Therapy, Int. J. Immunopathol. Pharmacol., 2004, vol. 17, no. 2, pp. 117–126.

    PubMed  CAS  Google Scholar 

  73. Pan, P.Y., Wang, G.X., Yin, B., Ozao, J., Ku, T., Divino, C.M., and Chen, S.H., Reversion of Immune Tolerance in Advanced Malignancy: Modulation of Myeloid-Derived Suppressor Cell Development by Blockade of Stem-Cell Factor Function, Blood, 2008, vol. 111, no. 1, pp. 219–228.

    Article  PubMed  CAS  Google Scholar 

  74. John, A.R., Bramhall, S.R., and Eggo, M.C., Antiangiogenic Therapy and Surgical Practice, Brit. J. Surg., 2008, vol. 95, no. 3, pp. 281–293.

    Article  PubMed  CAS  Google Scholar 

  75. Mahtani, R.L. and Macdonald, J.S., Synergy between Cetuximab and Chemotherapy in Tumors of the Gastrointestinal Tract, Oncologist, 2008, vol. 13, no. 1, pp. 39–50.

    Article  PubMed  CAS  Google Scholar 

  76. Nénan, S., Boichot, E., Lagente, V., and Bertrand, C.P., Macrophage Elastase (MMP-12): A Pro-Inflammatory Mediator?, Mem. Inst. Oswaldo. Cruz., 2005, vol. 100,Suppl. 1, pp. 167–172.

    PubMed  Google Scholar 

  77. Ramnath, N. and Creaven, P.J., Matrix Metalloproteinase Inhibitors, Curr. Oncol. Rep., 2004, vol. 6, no. 2, pp. 96–102.

    Article  PubMed  Google Scholar 

  78. Gutierrez, M. and Giaccone, G., Antiangiogenic Therapy in Nonsmall Cell Lung Cancer, Curr. Opin. Oncol., 2008, vol. 20, no. 2, pp. 176–182.

    Article  PubMed  CAS  Google Scholar 

  79. Folkman, J., Angiogenesis: An Organizing Principle for Drug Discovery?, Nat. Rev. Drug. Discov., 2007, vol. 6, no. 4, pp. 273–286.

    Article  PubMed  CAS  Google Scholar 

  80. Weiss, J.M., Subleski, J.J., Wigginton, J.M., and Wiltrout, R.H., Immunotherapy of Cancer by IL-12-Based Cytokine Combinations, Exp. Opin. Biol. Ther., 2007, vol. 7, no. 11, pp. 1705–1721.

    Article  CAS  Google Scholar 

  81. Dirkx, A.E.M., de Egbrink, M.G.A., Wagstaff, J., and Griffioen, A.W., Monocyte/Macrophage Infiltration in Tumors: Modulators of Angiogenesis, J. Leukocyte Biol., 2006, vol. 80, pp. 1183–1186.

    Article  PubMed  CAS  Google Scholar 

  82. Tozer, G.M., Kanthou, C., and Baguley, B.C., Disrupting Tumour Blood Vessels, Nat. Rev. Cancer, 2005, vol. 5, no. 6, pp. 423–435.

    Article  PubMed  CAS  Google Scholar 

  83. Yun-San, YipA., Yuen-Yuen, Ong E., and Chow, L.W., Vinflunine: Clinical Perspectives of An Emerging Anticancer Agent, Exp. Opin Investig Drugs, 2008, vol. 17, no. 4, pp. 583–591.

    Article  CAS  Google Scholar 

  84. Moretti, L., Yang, E.S., Kim, K.W., and Lu, B., Autophagy Signaling in Cancer and Its Potential as Novel Target to Improve Anticancer Therapy, Drug Resist. Updat., 2007, vol. 10, nos. 4/5, pp. 135–143.

    Article  PubMed  CAS  Google Scholar 

  85. Kondo, Y. and Kondo, S., Autophagy and Cancer Therapy, Autophagy, 2006, vol. 2, no. 2, pp. 85–90.

    PubMed  Google Scholar 

  86. Amaravadi, R.K. and Thompson, C.B., The Roles of Therapy-Induced Autophage and Necrosis in Cancer Treatment, Clin. Cancer Res., 2007, vol. 13, no. 24, pp. 7271–7279.

    Article  PubMed  CAS  Google Scholar 

  87. Pedersen, P.L., The Cancer Cells “Power Plants” As Promising Therapeutic Targets: An Overview, J. Bioenegr. Biomembr, 2007, vol. 39, no. 1, pp. 1–12.

    Article  CAS  Google Scholar 

  88. Nelson, D.A. and White, E., Exploiting Different Ways to Die, Genes Dev., 2004, vol. 18, pp. 1223–1226.

    Article  PubMed  CAS  Google Scholar 

  89. Hengge, U.R. and Ruzicka, T., Topical Immunomodulation in Dermatology: Potential of Toll-Like Receptor Agonists, Dermatol. Surg., 2004, vol. 30, no. 8, pp. 1101–1112.

    Article  PubMed  Google Scholar 

  90. Azuma, I. and Seya, T., Development of Immunoadjuvants for Immunotherapy of Cancer, Int. Immunopharmacol., 2002, vol. 1, no. 7, pp. 1249–1259.

    Article  Google Scholar 

  91. Jahrsdörfer, B., Wooldridge, J.E., Blackwell, S.E., Taylor, C.M., Griffith, T.S., Link, B.K., and Weiner, G.J., Immunostimulatory Oligodeoxynucleotides Induce Apoptosis of B Cellchronic Lymphocytic Leukemia Cells, J. Leukocyte Biol., 2005, vol. 77, no. 3, pp. 378–387.

    Article  PubMed  CAS  Google Scholar 

  92. Garland, S.M., Imiquimod, Curr. Opin. Infect. Dis., 2003, vol. 16, no. 2, pp. 85–89.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Skivka.

Additional information

Original Russian Text © L.M. Skivka, G.V. Gorbik, O.G. Fedorchuk, V.V. Pozur, 2009, published in Tsitologiya i Genetika, 2009, Vol. 43, No. 4, pp. 71–82.

About this article

Cite this article

Skivka, L.M., Gorbik, G.V., Fedorchuk, O.G. et al. Tumor-associated macrophages in the prospect of development of targeted anticancer. Cytol. Genet. 43, 283–292 (2009). https://doi.org/10.3103/S0095452709040094

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452709040094

Keywords

Navigation