Skip to main content
Log in

Phenomenological model of nanocrystalline silicon film formation by plasma-enhanced chemical vapor deposition

  • Materials and Technologies for Nano- and Optoelectronics
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

A combined theoretical and experimental analysis of the crystalline phase fraction in nanocrystalline films grown by low-energy plasma-enhanced chemical vapor deposition is presented. The effect of the key parameters, such as temperature, silane flux, and hydrogen dilution ratio, is analyzed. An atomic-scale Monte Carlo model is developed, where the crystallization probability depends on the local environment of the nanocrystalline film. Good agreement is found between the experiments and theory, despite the use of a single fitting parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Matsuda, “Thin-Film Silicon—Growth Process and Solar Cell Application,” Jpn. J. Appl. Phys. 43,Part 1, 7909 (2004).

    Article  ADS  Google Scholar 

  2. D. Maroudas, “Modeling of Radical-Surface Interactions in the Plasma-Enhanced Chemical Vapor Deposition of Silicon Thin Films,” Adv. Chem. Eng. 28, 251 (2001).

    Article  Google Scholar 

  3. C. Cavallotti, M. D. Di Stanislao, and S. Carrá, “Interplay of Physical and Chemical Aspects in the PECVD and Etching of Thin Solid Films,” Prog. Cryst. Growth Charact. Mater. 48, 123 (2004).

    Article  Google Scholar 

  4. A. Shah, P. Torres, R. Tscharner, et al., “Photovoltaic Technology: The Case for Thin-Film Solar Cells,” Science 285(5428), 692 (1999).

    Article  Google Scholar 

  5. S. Cereda, M. Ceriotti, F. Montalenti, et al., “Quantitative Estimate of H Abstraction by Thermal SiH3 on Hydrogenated Si(001)(2 × 1),” Phys. Rev. B 75(23), 235311 (2007).

    Google Scholar 

  6. S. Cereda, F. Zipoli, M. Bernasconi, et al., “Thermal-Hydrogen Promoted Selective Desorption and Enhanced Mobility of Adsorbed Radicals in Silicon Film Growth,” Phys. Rev. Lett. 100(4), 046105 (2008).

    Google Scholar 

  7. S. Cereda, “Atomic-Scale Modeling of Surface Processes Relevant for Si Thin-Film Growth,” PhD. Thesis in Materials Science (University of Milano-Bicocca, 2007).

  8. X. Tan and G. W. Yang, “Physical Mechanisms of Hydrogen-Enhanced Onset of Epitaxial Growth of Silicon by Plasma-Enhanced Chemical Vapor Deposition,” Appl. Phys. Lett. 93(6), 061902 (2008).

    Google Scholar 

  9. C. Rosenblad, H. R. Deller, A. Dommann, et al., “Silicon Epitaxy by Low-Energy Plasma Enhanced Chemical Vapor Deposition,” J. Vac. Sci. Technol. A16(5), 2785 (1998).

    ADS  Google Scholar 

  10. S. Binetti, M. Acciarri, M. Bollani M. et al., “Nanocrystalline Silicon Films Grown by Low Energy Plasma Enhanced Chemical Vapor Deposition for Optoelectronic Applications,” Thin Solid Films 487(1/2), 19 (2005).

    Article  ADS  Google Scholar 

  11. A. Le Donne, S. Binetti, G. Isella, and S. Pizzini, “Structural Homogeneity of nc-Si Films Grown by Low-Energy PECVD,” Electrochem. Solid-State Lett. 11(6), 5 (2008).

    Article  Google Scholar 

  12. A. Le Donne, S. Binetti, G. Isella, et al., “Structural Characterization of nc-Si Films Grown by Low-Energy PECVD on Different Substrates,” Appl. Surf. Sci. 254(6), 2804 (2008).

    ADS  Google Scholar 

  13. C. Smit, R. A. C. M. van Swaaij, H. Donker, et al., “Determining the Material Structure of Microcrystalline Silicon from Raman Spectra,” J. Appl. Phys. 94(5), 3582 (2003).

    Article  ADS  Google Scholar 

  14. S. Inanaga, F. Rahman, F. Khanom, and A. Namiki, “Rate Equation Analysis of Hydrogen Uptake on Si(100) Surfaces,” J. Vac. Sci. Technol. A23(5), 1471 (2005).

    ADS  Google Scholar 

  15. M. Rondanini, S. Cereda, F. Montalenti, et al., “A Multiscale Model of the Plasma Assisted Deposition of Crystalline Silicon,” Surf. Coat. Technol. 201, 8863 (2007).

    Article  Google Scholar 

  16. M. Rondanini, C. Cavallotti, D. Ricci, et al., “An Experimental and Theoretical Investigation of a Magnetically Confined dc Plasma Discharge,” J. Appl. Phys. 104(1), 013304 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. L. Novikov.

Additional information

Original Russian Text © P. L. Novikov, A. Le Donne, S. Cereda, L. Miglio, S. Pizzini, S. Binetti, M. Rondanini, C. Cavallotti, D. Chrastina, T. Moiseev, H. von Känel, G. Isella, F. Montalenti, 2009, published in Avtometriya, 2009, Vol. 45, No. 4, pp. 49–55.

About this article

Cite this article

Novikov, P.L., Le Donne, A., Cereda, S. et al. Phenomenological model of nanocrystalline silicon film formation by plasma-enhanced chemical vapor deposition. Optoelectron.Instrument.Proc. 45, 322–327 (2009). https://doi.org/10.3103/S8756699009040062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699009040062

Key words

Navigation