Skip to main content
Log in

Modern trends in tungsten alloys electrodeposition with iron group metals

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Theoretical and applied studies of tungsten alloys with iron group metals (Me-W) are being carried out worldwide, in the light of their versatile applications. The aim of this paper is to provide an overview of the works on electrodeposition of tungsten alloys with iron group metals, their properties and applications. There are 221 papers reviewing on the following theoretical and practical topics: chemistry of electrolytes used for electrodeposition, codeposition mechanisms, and properties of electrodeposited tungsten alloys. In addition, the formation of W(VI) and iron group metal (Me) complexes (polytungstates and complexes of Me(II) and W(VI)) with citrates and OH is analysed based on the published data and the calculated distribution of species as a function of pH (ranged from 1 to 10) is provided for solutions with/without citrates. The adduced data are correlated with the compositions of electrodeposited alloys. Various codeposition models of tungsten with iron group metals described in the literature are critically discussed as well. The peculiarities of the structure of tungsten alloys and their thermal stability, mechanical, tribological, and magnetic properties, corrosion performance, their applications in hydrogen electrocatalysis, template-assisted deposition into recesses (aimed to obtain micro- and nanostructures) are also reviewed and mapped.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lassner, E. and Schubert, W.D., Tungsten-Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, Springer, 1999.

  2. Holt, M.L. and Kahlenberg, L., The Deposition of Tungsten from Aqueous Alkaline Solutions, Quart. Rev. Am. Electroplaters’ Soc., 1933, vol. 9, pp. 41–52.

    Google Scholar 

  3. Fink, G. and Jones, F.L., The Electrodeposition of Tungsten from Aqueous Solutions, Trans. Electrochem. Soc., 1931, vol. 59, pp. 461–481.

    Article  Google Scholar 

  4. Goltz, L.N. and Kharlamov, V.N., Electrolytic Deposition of Alloys of Tungsten, Nickel and Copper from Water Solutions, Zhur. Prikl. Khim., 1936, vol. 9, pp. 640–652.

    Google Scholar 

  5. Schwartz, M., Myung, N.V., and Nobe, K., Electro-Deposition of Iron Group-rare Earths Alloys from Aqueous Media, J. Electrochem. Soc., 2004, vol. 151, pp. C468–C477.

    Article  Google Scholar 

  6. Brenner, A., Burkhead, P., and Seegmiller, E., Electro-deposition of Tungsten Alloys Containing Iron, Nickel, and Cobalt, J. Res. Nat. Bur. Stand., 1947, vol. 39, pp. 351–383.

    Article  Google Scholar 

  7. Lietzeke, H.M. and Holt, M.L., Codeposition of Tungsten and Iron from an Aqueous Ammoniacal Citrate Bath, J. Electrochem. Soc., 1948, vol. 94, pp. 252–261.

    Article  Google Scholar 

  8. Holt, M.L. and Vaaler, L.E., Electrolytic Reduction of Aqueous Tungstate Solutions, J. Electrochem. Soc., 1948, vol. 94, pp. 50–58.

    Article  Google Scholar 

  9. Akiyama, T. and Fukushima, H., Recent Study on the Mechanism of the Electrodeposition of Iron Group Metal Alloys, ISIJ Int., 1992, vol. 32, pp. 787–798.

    Article  Google Scholar 

  10. Vasko, A.T., Electrochemistry of Tungsten, Kiev: Tipogr. Tehnika, 1977.

    Google Scholar 

  11. Brenner, A., Electrodeposition of Alloys. Principle and Practice, New York and London: Academic Press, 1963.

    Google Scholar 

  12. Bobletsky, M. and Jordan, J., The Metallic Complexes of Tartrates and Citrates, Their Structure and Behavior in Dilute Solutions. I. The Cupric and Nickelous Complexes, J. Am. Chem. Soc., 1945, vol. 67, pp. 1824–1831.

    Article  Google Scholar 

  13. Bobletsky, M. and Jordan, J., The Structure and Behavior of Ferric Tartrate and Citrate Complexes in Dilute Solutions, J. Am. chem. Soc., 1947, vol. 69, pp. 2286–2290.

    Article  Google Scholar 

  14. Ernst, D.W., Amlie, R.F., and Holt, M.L.J., Electrodeposition of Molydenum Alloys from Aqueous Solutions, J. Electrochem. Soc., 1955, vol. 102, pp. 461–469.

    Article  Google Scholar 

  15. Ernst, D.W. and Holt, M.L.J., Cathode Potentials During the Electrodeposition of Molybdenum Alloys from Aqueous Solutions, J. Electrochem. Soc., 1958, vol. 105, pp. 686–692.

    Article  Google Scholar 

  16. Svensson, M., Wahlstrom, U., and Holmbom, G., Compositionally Modulated Cobalt-tungsten Alloys Deposited from a Single Ammoniacal Electrolyte, Surf. Coat. Technol., 1998, vol. 105, pp. 218–223.

    Article  Google Scholar 

  17. Wei, G.Y., Lou, J.W., Ge, H.L., Yu, Y.D., Jiang, L., and Sun, L.X., Co-W Films Prepared from Electroplating Baths with Different Complexing Agents, Surf. Eng., 2012, vol. 28, pp. 412–417.

    Article  Google Scholar 

  18. Weston, D.P., Harris, S.J., Shipway, P.H., Weston, N.J., and Yap, G.N., Establishing Relationships between Bath Chemistry, Electrodeposition and Microstructure of Co-W Alloy Coatings Produced from a Gluconate Bath, Electrochim. Acta, 2010, vol. 55, pp. 5695–5708.

    Article  Google Scholar 

  19. Weston, D.P., Haris, S.J., Capel, H., Ahmed, N., Shipway, P.H., and Yellup, J.M., Nanostructured Co-W Coatings Produced by Electrodeposition to Replace Hard Cr on Aerospace Components, Trans. Inst. Met. Finish, 2010, vol. 88, pp. 47–56.

    Article  Google Scholar 

  20. Kapralova, I.G., Perelygin, Yu.P., and Semchenko, T.K., Electrodeposition of Nickel-tungsten Alloy from Acetate Electrolyte, Russ. J. Appl. Chem., 2003, vol. 76, pp. 1524–1526.

    Article  Google Scholar 

  21. Mizushima, I., Tang, P.T., Hansen, H.N., and Somers, M.A.J., Residual Stress in Ni-W Electrodeposits, Electrochim. Acta, 2006, vol. 51, pp. 6128–6134.

    Article  Google Scholar 

  22. Zayats, A.I. and Perekhrest, N.A., Electrodeposition of Iron-tungsten Alloys from Pyrophosphate Electrolytes, J. Appl. Chem. USSR, 1971, vol. 44, pp. 1286–1291.

    Google Scholar 

  23. Campbell, F. and Von Fraunhofer, J.A., Some Uses of Pyrophosphates in Metal Finishing. Part II. Cobalttungsten Alloys to Zinc, Including Pretreatment for Magnesium, Surface Technology, 1977, vol. 5, pp. 235–254.

    Article  Google Scholar 

  24. Cesiulis, H., Donten, M., Donten, M.L., and Stojek, Z., Electrodeposition of Ni-W, Ni-Mo and Ni-Mo-W Alloys from Pyrophosphate Baths, Materials Science (Medziagotyra), 2001, vol. 7, pp. 237–241.

    Google Scholar 

  25. Andricacos, P., Boettcher, S.H., Malhotra, S.G., Paunovic, M., and Ransom, C., Structure Comprising a Barrier Layer of a Tungsten Alloy Comprising Cobalt and/or Nickel, U.S. Patent Application Publication 6 pp. US 2004108136 A1 20040610 (2004).

  26. Ehrfeld, W., Hessel, V., Löwe, H., Schulz, Ch., and Weber, L., Materials of LIGA Technology, Microsyst. Technol., 1999, vol. 5, pp. 105–112.

    Article  Google Scholar 

  27. Slavcheva, E., Mokwa, W., and Schnakenberg, U., Electro-deposition and Properties of NiW Films for MEMS Application, Electrochim. Acta, 2005, vol. 50, pp. 5573–5580.

    Article  Google Scholar 

  28. Navarro-Flores, E., Chong, Z., and Omanovic, S., Characterization of Ni, NiMo, NiW and NiFe Electroactive Coatings as Electrocatalysts for Hydrogen Evolution in an Acidic Medium, Journal of Molecular Catalysis A: Chemical, 2005, vol. 226, pp. 179–197.

    Article  Google Scholar 

  29. Sulitanu, N. and Brinza, F., Structure Properties Relationships in Electrodeposited Ni-W thin Films with Columnar Nanocrystallites, J. Optoelectron. Adv. Mater., 2003, vol. 5, pp. 421–427.

    Google Scholar 

  30. Lurje, Yu., Handbook of Analytical Chemistry, Moscow: Khimya, 1979.

    Google Scholar 

  31. Angana Sen and Panchanan Pramanik, A Chemical Sythesis of Fine-Grained Metal Tungstate Powders (M = Ca, Co, Ni, Cu, Zn), J. Eur. Ceram. Soc., 2001, vol. 21, pp. 745–750.

  32. Dias, A. and Ciminelli, V.S.T., Thermodynamic Calculations and Modeling of the Hydrothermal Synthesis of Nickel Tungstates, J. Eur. Ceram. Soc., 2001, vol. 21, pp. 2061–2065.

    Article  Google Scholar 

  33. Osseo-Asare, K., Solution Chemistry of Tungsten Leaching Systems, Metall. Mater. Trans. B, 1982, vol. 13, pp. 555–564.

    Article  Google Scholar 

  34. Grith, W.P. and Lesniak, P.J.B., Raman Studies on Species in Aqueous Solutions. Part III. Vanadates, Molybdates, and Tungstates, J. Chem. Soc. A, 1969, vol. 7, pp. 1066–1071.

    Article  Google Scholar 

  35. Pope, M.T., Polyoxymetalates, in Encyclopedia of Inorganic Chemistry, 2nd ed., Wiley, 2005, pp. 3966–3976.

  36. Aveston, J., Hydrolysis of Tungsten (VI): Ultra-centrifugation, Acidity Measurements, and Raman Spectra of Polytungstates, Inorg. Chem., 1964, vol. 3, pp. 981–986.

    Article  Google Scholar 

  37. Contescu, C., Jagiello, J., and Schwartz, J.A., Chemistry of Surface Tungsten Species on WO3/Al2O3 Composite Oxides under Aqueous Conditions, J. Phys. Chem., 1993, vol. 97, pp. 10152–10157.

    Article  Google Scholar 

  38. Kepert, D.L., Isopolytungstates, in Progress in Inorganic Chemistry, Cotton, F.A., Ed., New York: Interscience, 1962, vol. 4, pp. 199–274.

    Chapter  Google Scholar 

  39. Kotrly, S. and Šucha, L., Handbook of Chemical Equilibria in Analytical Chemistry, Chalmers, R.A. and Masson, M., Eds., N.Y.: J. Wiley, 1985.

    Google Scholar 

  40. Budreika, A., The Study of the Electrodeposition of Ni, Co and Their Alloys with Tungsten and Molybdenum, PhD Thesis, Vilnius: Tipogr. Vilnius University, 2010.

    Google Scholar 

  41. Raghunath, C., Lee, K.T., Kneer, E.A., Mathew, V., and Raghavan, S., Mechanistic Aspects of Chemical Mechanical Polishing of Tungsten Using Ferric Ion Based Glumina Slurries, Electrochemical Society Proceedings, 1997, vols. 96–22, pp. 1–7.

    Google Scholar 

  42. Holt, M.L. and Black, R.E., Electrodeposition of Iron-Tungsten Alloys from an Acid Plating Bath, J. Electrochem. Soc., 1942, vol. 82, pp. 205–215.

    Article  Google Scholar 

  43. Shacham-Diaman Yosi, Sverdlov, D.Y., and Petrov, N., Electroless Deposition of Thin-Film Cobalt-Tungsten-Phosphorus Layers Using Tungsten Phosphoric Acid (H3[P(W3O10)4]) for ULSI and MEMS Applications, J. Electrochem. Soc., 2001, vol. 148, pp. C162–C167.

    Article  Google Scholar 

  44. Cesiulis, H., Baltutiene, A., Donten, M., Donten, M.L., and Stojek, Z., Increase in Rate of Electrodeposition and in Ni(II) Concentration in the Bath as a Way to Control Grain Size of Amorphous/Nanocrystalline Ni-W Alloys, J. Solid State Electrochem., 2002, vol. 6, pp. 237–244.

    Article  Google Scholar 

  45. Cesiulis, H. and Podlaha-Murphy, E.J., Electrolyte Considerations of Electrodeposited Ni-W Alloys for Microdevice Fabrication, Materials Science (Medziagotyra), 2003, vol. 9, pp. 324–327.

    Google Scholar 

  46. Donten, M., Stojek, Z., and Cesiulis, H., Formation of Nanofibres in Thin Layers of Amorphous W Alloys with Ni, Co and Fe Obtained by Electrodeposition, J. Electrochem. Soc., 2003, vol. 150, pp. C95–C98.

    Article  Google Scholar 

  47. Donten, M., Cesiulis, H., and Stojek, Z., Electrodeposition and Properties of Ni-W, Fe-W and Ni-Fe-W Amorphous Alloys. A Comparative Study, Electrochim. Acta, 2000, vol. 45, pp. 3389–3396.

    Article  Google Scholar 

  48. Donten, M., Bulk and Surface Composition, Amorphous Structure, and Thermocrystallization of Electrodeposited Alloys of Tungsten with Iron, Nickel, and Cobalt, J. Solid State Electrochem., 1999, vol. 3, pp. 87–96.

    Article  Google Scholar 

  49. Easther, P., Kennady, C.J., Saravanan, P., and Venkatachalam, T., Structural and Magnetic Properties of Electrodeposited Ni-Fe-W Thin Films, Journal of Non-Oxide Glasses, 2009, vol. 1, pp. 301–309.

    Google Scholar 

  50. Cesiulis, H. and Budreika, A., Electroreduction of Ni(II) and Co(II) from Pyrophosphate Solutions, Materials Science (Medziagotyra), 2010, vol. 16, pp. 52–56.

    Google Scholar 

  51. Cruywagen, J.J., Krüger, L., and Rohwer, E.A., Complexation of Tungsten (VI) with Citrate, J. Chem. Soc., Dalton Trans., 1991, vol. 7, pp. 1727–1731.

    Article  Google Scholar 

  52. Haseeb, A.S.M.A., Albers, U., and Bade, K., Friction and Wear Characteristics of Electrodeposited Nanocrystalline Nickel-tungsten Alloy Films, Wear, 2008, vol. 264, pp. 106–112.

    Article  Google Scholar 

  53. Sriraman, K.R., Raman, S.G.S., and Seshadri, S.K., Synthesis and Evaluation of Hardness and Sliding Wear Resistance of Electrodeposited Nanocrystalline Ni-W, Mater. Sci. Eng. A, 2006, vol. 418, pp. 303–311.

    Article  Google Scholar 

  54. Yamasaki, T., High-Strength Nanocrystalline Ni-W Alloys Produced by Electrodeposition, Materials Physics and Mechanics, 2000, vol. 1, pp. 127–132.

    Google Scholar 

  55. Zhu, L., Younes, O., Ashkenasy, N., Shacham-Diamand, Y., and Gileadi, E., STM/AFM Studies of the Evolution of Morphology of Electroplated Ni/W Alloys, Appl. Surf. Sci., 2002, vol. 200, pp. 1–14.

    Article  Google Scholar 

  56. Schuh, C.A., Nieh, T.G., and Iwasaki, H., The Effect of Solid Solution W Additions on the Mechanical Properties of Nanocrystalline Ni, Acta Mater., 2003, vol. 51, pp. 431–443.

    Article  Google Scholar 

  57. Donten, M., Stojek, Z., and Osteryoung, J.G., Voltammetric, Optical, and Spectroscopic Examination of Anodically Forced Passivation of Co-W Amorphous Alloys, J. Electrochem Soc., 1993, vol. 140, pp. 3417–3424.

    Article  Google Scholar 

  58. Donten, M. and Stojek, Z., Pulse Electroplating of Rich-in-tungsten thin Layers of Amorphous Co-W Alloys, J. Appl. Electrochem., 1996, vol. 26, pp. 665–672.

    Article  Google Scholar 

  59. Bodaghi, A. and Hosseini, J., Corrosion Behavior of Electrodeposited Cobalt-Tungsten Alloy Coatings in NaCl Aqueous Solution, Int. J. Electrochem. Sci., 2012, vol. 7, pp. 2584–2595.

    Google Scholar 

  60. Lietzke, M.H. and Holt, L., Codeposition of Tungsten and Iron from an Aqueous Ammoniacal Citrate Bath, J. Electrochem. Soc., 1948, vol. 94, pp. 252–261.

    Article  Google Scholar 

  61. Gamburg, Yu.D., Zakharov, E.N., and Goryunov, G.E., Electrodeposition, Structure and Properties of Irontungsten Alloys, Russ. J. Electrochem., 2001, vol. 37, pp. 670–673.

    Article  Google Scholar 

  62. Matsunaga, M., Li, M., and Morimitsu, M., Mechanism of Electrodeposition of Amorphous Tungsten Alloy Film, Electrochemical Society Proceedings, 1998, vols. 97–27, pp. 544–547.

    Google Scholar 

  63. Tsyntsaru, N., Belevsky, S., Dikusar, A., and Celis, J.-P., Tribological Behavior of Electrodeposited Cobalt-Tungsten Coatings: Dependence on Current Parameters, Trans. Inst. Metal Finish, 2008, vol. 86, pp. 301–307.

    Article  Google Scholar 

  64. Tsyntsaru, N., Cesiulis, H., Budreika, A., Ye, X., Juskenas, R., and Celis, J.-P., The Effect of Electrodeposition Conditions and Post-Annealing on Nanostructure of Co-W Coatings, Surf. Coat. Technol., 2012, vol. 206, pp. 4262–4269.

    Article  Google Scholar 

  65. Bobanova, Zh., Dikusar, A.I., Cesiulis, H., Celis, J.-P., and Prosycevas, I., Micromechanical and Tribological Properties of Nanocrystalline Coatings of Iron-Tungsten Alloys Electrodeposited from Citrate-Ammonia Solutions, Russ. J. Electrochem., 2009, vol. 45, pp. 895–901.

    Article  Google Scholar 

  66. Tsyntsaru, N., Dikusar, A., Cesiulis, H., Celis, J.-P., Bobanova, Z., Sidel’nikova, S., Belevskii, S., Yapontseva, Y., Bersirova, O., and Kublanovskii, V., Tribological and Corrosive Characteristics of Electrochemical Coatings Based on Cobalt and Iron Superalloys, Powder Metall. Met. Ceram., 2009, vol. 48, pp. 419–428.

    Article  Google Scholar 

  67. Cesiulis, H., Xie, X.G., and Podlaha-Murphy, E., Electrodeposition of Co-W Alloys with P and Ni, Materials Science (Medziagotyra), 2009, vol. 15, pp. 115–122.

    Google Scholar 

  68. Ibrahim, M.A.M., Abd El Rehim, S.S., and Moussa, S.O., Electrodeposition of Noncrystalline Cobalt-tungsten Alloys from Citrate Electrolytes, J. Appl. Electrochem., 2003, vol. 33, pp. 627–633.

    Article  Google Scholar 

  69. Eliaz, N. and Gileadi, E., The Mechanism of Induced Co-deposition of Ni-W Alloys, ECS Transactions, 2007, vol. 2, pp. 337–349.

    Article  Google Scholar 

  70. Younes-Metzler, O., Zhu, L., and Gileadi, E., The Anomalous Codeposition of Tungsten in the Presence of Nickel, Electrochim. Acta, 2003, vol. 48, pp. 2551–2562.

    Article  Google Scholar 

  71. Younes, O., Zhu, L., Rosenberg, Y., Shacham-Diamand, Y., and Gileadi, E., Electroplating of Amorphous Thin Films of Tungsten/Nickel Alloys, Langmuir, 2001, vol. 17, pp. 8270–8275.

    Article  Google Scholar 

  72. Belevskii, S.S., Kosova, A.P., Yushchenko, S.P., Yakhova, E.A., Shul’man, A.I., and Dikusar, A.I., Changes in the Properties of a Citrate Electrolyte Used to Manufacture Cobalt-Tungsten Coatings, Surf. Eng. Appl. Electrochem., 2011, vol. 47, pp. 4–8.

    Article  Google Scholar 

  73. Epelboin, I. and Wiart, R., Mechanism of the Electrocrystallization of Nickel and Cobalt in Acidic Solution, J. Electrochem. Soc., 1971, vol. 118, pp. 1577–1582.

    Article  Google Scholar 

  74. Belevskii, S.S., Cesiulis, H., Tsyntsaru, N.I., Dikusar, A.I., The Role of Mass Transfer in the Formation of the Composition and Structure of CoW Coatings Electrodeposited from Citrate Solutions, Surf. Eng. Appl. Electrochem., 2010, vol. 46, pp. 570–578.

    Article  Google Scholar 

  75. Bratoeva, M. and Atanasov, N., Effect of Sulfamatecitrate Electrolyte pH on the Ni-W Alloy Electrodeposition, Russ. J. Electrochem., 2000, vol. 36, pp. 60–63.

    Article  Google Scholar 

  76. Nishi, Y., Mogi, Y., Oguri, K., and Watanabe, T., Preparation of Fe-W Amorphous Films by an Electroplating Method, J. Mater. Sci. Lett., 1995, vol. 14, pp. 1–3.

    Article  Google Scholar 

  77. Ghaferi, Z., Raeissi, K., Golozar, M.A., and Edris, H., Characterization of Nanocrystalline Co-W Coatings on Cu Substrate, Electrodeposited from a Citrateammonia Bath, Surf. Coat. Technol., 2011, vol. 206, pp. 497–505.

    Article  Google Scholar 

  78. Younes, O. and Gileadi, E., Electroplating of Ni/W Alloys. I. Ammoniacal Citrate Baths, J. Electrochem. Soc., 2002, vol. 149, pp. C100–C111.

    Article  Google Scholar 

  79. Clark, E. and Lietzke, M.H., The Mechanism of the Tungsten Alloy Plating Process, J. Electrochem. Soc., 1952, vol. 99, pp. 245–249.

    Article  Google Scholar 

  80. Eliaz, N. and Gileadi, E., Induced Codeposition of Alloys of Tungsten, Molybdenum and Rhenium with Transition Metals, In Modern Aspects of Electrochemistry, 42 Springer, New York, 2008, pp. 191–301.

    Google Scholar 

  81. Aravinda, A., Muralidharan, V.S., and Mayanna, S.M., Electrodeposition and Dissolution of Co-W Alloy Films, J. App. Electrochem., 2000, vol. 30, pp. 601–606.

    Article  Google Scholar 

  82. Belevskii, S.S., Yushchenko, S.P., and Dikusar, A.I., Anomalous Electrodeposition of Co-W Coatings from a Citrate Electrolyte Due to the Formation of Multinuclear Heterometallic Complexes in the Solution, Surf. Eng. Appl. Electrochem., 2012, vol. 48, pp. 97–98.

    Article  Google Scholar 

  83. Fritz, Th., Mokwa, W., and Schnakenberg, U., Electrodeposited Nickel-tungsten Alloys for Micro-engineering. Part I. Deposition Based on Wagramyan Electrolytes, Galvanotechnik, 2002, vol. 93, pp. 2108–2117.

    Google Scholar 

  84. Juškėnas, R., Valsiūnas, I., Pakštas, V., Selskis, A., Jasulaitienė, V., Karpavičienė, V., and Kapočius, V., XRD, XPS and AFM Studies of the Unknown Phase Formed on the Surface During Electrodeposition of Ni-W Alloy, Appl. Surf. Sci., 2006, vol. 253, pp. 1435–1442.

    Article  Google Scholar 

  85. Fukusima, H., Akiyama, T., Akagl, S., and Higashi, K., Role of Iron-group Metals in the Induced Codeposition of Molybdenum from Aqueous Solution, Transactions of the Japan Institute of Metals, 1979, vol. 20, pp. 358–364.

    Google Scholar 

  86. Oue, S., Nakano, H., Kobayashi, S., and Fukushima, H., Structure and Codeposition Behavior of Ni-W Alloys Electrodeposited from Ammoniacal Citrate Solutions, J. Electrochem. Soc., 2009, vol. 156, pp. D17–D22.

    Article  Google Scholar 

  87. Chassaing, E., Quang, K., and Wiart, R., Mecahnism of Nickel-molybdenum Alloy Electrodeposition in Citrate Electrolytes, J. Appl. Electrochem., 1989, vol. 19, pp. 839–834.

    Article  Google Scholar 

  88. Go’mez, E., Pellicer, E., and Valle’s, E., An Approach to the First Stages of Cobalt-nickel-molybdenum, Electro-deposition in Sulphate-citrate Medium, J. Electroanal. Chem., 2005, vol. 580, pp. 222–230.

    Article  Google Scholar 

  89. Sun, S. and Podlaha, E.J., Electrodeposition of Morich, MoNi Alloys from an Aqueous Electrolyte, J. Electrochem. Soc., 2012, vol. 159, pp. D1–D6.

    Article  Google Scholar 

  90. Podlaha, E.J. and Landolt, D., Induced Codeposition: I. Experimental Investigation of Ni-Mo Alloys, J. Electrochem. Soc., 1996, vol. 143, pp. 885–892.

    Article  Google Scholar 

  91. Podlaha, E.J. and Landolt, D., Induced Codeposition: II. Mathematical Modeling of Ni-Mo Alloys, J. Electrochem. Soc., 1996, vol. 143, pp. 893–899.

    Article  Google Scholar 

  92. Podlaha, E.J. and Landolt, D., Induced Codeposition: III. Molybdenum Alloys with Nickel, Cobalt and Iron, J. Electrochem. Soc., 1997, vol. 144, pp. 1672–1680.

    Article  Google Scholar 

  93. Jakšič, J.M., Vojnovic, M.V, and Krstajic, N.V., Kinetic Analysis of Hydrogen Evolution at Ni-Mo Alloy Electrodes, Electrochim. Acta, 2000, vol. 45, pp. 4151–4158.

    Article  Google Scholar 

  94. Matlosz, M., Competitive Adsorption Effects in the Electrodeposition of Iron-nickel Alloys, J. Electrochem. Soc., 1993, vol. 140, pp. 2272–2279.

    Article  Google Scholar 

  95. Baker, B.C. and West, A.C., Electrochemical Impedance Spectroscopy Study of Nickel-iron Deposition: II. Theoretical Interpretation, J. Electrochem. Soc., 1997, vol. 144, pp. 169–175.

    Article  Google Scholar 

  96. Zech, N., Podlaha, E.J., and Landolt, D., Anomalous Codeposition of Iron-Group Alloys. II. Mathematical Model, J. Electrochem. Soc., 1999, vol. 146, pp. 2892–2900.

    Article  Google Scholar 

  97. Podlaha, E.J., Agarwal, P., and Landolt, D., A Study of the Mo Codeposition Mechanism by Electrochemical Impedance Spectroscopy, Proceedings of the Symposium on Fundamental Aspects of Electrochemical Deposition and Dissolution Including Modeling, Paunovic, J.M., Datta, M., Osaka, T., and Talbot, J.B., Eds., The Electrochemical Society, Pennington, NJ, 1997, vols. 97-27, pp. 510–512.

    Google Scholar 

  98. Beltowska-Lehman, E., Kinetics of Induced Electrodeposition of Alloys Containing Mo from Citrate Solutions, Phys. Status Solidi C, 2008, vol. 5, pp. 3514–3517.

    Article  Google Scholar 

  99. Obradovič, M., Stevanovič, J., Despič, A.R., and Stevanovič, R., Electrochemical Deposition and Phase Structure of Electrodeposited Ni-W Alloys, J. Serb. Chem. Soc., 1999, vol. 64, pp. 245–257.

    Google Scholar 

  100. Kröger, F.A., Cathodic Deposition and Characterization of Metallic or Semiconducting Binary Alloys or Compounds, J. Electrochem. Soc., 1978, vol. 125, pp. 2028–2034.

    Article  Google Scholar 

  101. Landolt, D., Electrochemical and Materials Science Aspects of Alloy Deposition, Electrochim. Acta, 1994, vol. 39, pp. 1075–1090.

    Article  Google Scholar 

  102. Mizushima, I., Tang, P.T., Hansen, H.N., and Somers, M.A.J., Residual Stress in Ni-W Electrodeposits, Electrochim. Acta, 2006, vol. 51, pp. 6128–6134.

    Article  Google Scholar 

  103. Mizushima, I., Tang, P.T., Hansen, H.N., and Somers, M.A.J., Development of a New Electroplating Process for Ni-W Alloy Deposits, Electrochim. Acta, 2006, vol. 51, pp. 888–896.

    Article  Google Scholar 

  104. Donten, M., Gromulski, T., and Stojek, Z., The Interface the Interface between Metallic Substrates and Layers of Electrodeposited Co-W Amorphous Alloys, J. Alloys Compd., 1998, vol. 279, pp. 272–278.

    Article  Google Scholar 

  105. Sulitanu, N., Structural Origin of Perpendicular Magnetic Anisotropy in Ni-Wthin Films, J. Magn. Magn. Mater., 2001, vol. 231, pp. 85–93.

    Article  Google Scholar 

  106. Vasauskas, V., Padgurskas, J., Rukuiža, R., Cesiulis, H., Celis, J.-P., Milčius, D., Prosyčevas, I., Cracking Behavior of Electrodeposited Nanocrystalline Tungsten-cobalt and Tungsten-iron Coatings, Mechanika, 2008, vol. 72, no. 4, pp. 21–27.

    Google Scholar 

  107. Ghaferi, Z., Raeissi, K., Golozar, M.A., Saatchi, A., and Kab, S., Comparison of Electrodeposition Aspects and Characteristics of Ni-W and Co-W Alloy Nanocrystalline Coatings, Iran. J. Mater. Sci. Eng., 2010, vol. 7, pp. 16–24.

    Google Scholar 

  108. Yamasaki, T., Schlossmacher, P., Ehrich, K., and Ogino, Y., Formation of Amorphous Electrodeposited Ni-W Alloys and their Nanocrystallization, Nanostruct. Mater., 1998, vol. 10, pp. 375–388.

    Article  Google Scholar 

  109. Huang, L., Dong, J.X., Yang, F.Z., Xu, S.K., and Zhou, S.M., Studies on the Mechanism, Structure and Microhardness of Ni-W Alloy Electrodeposits, Trans. IMF, 1999, vol. 77, pp. 185–187.

    Google Scholar 

  110. Królikowski, A., Płon-ska, E., Ostrowski, A., Donten, M., and Stojek, Z., Effects of Compositional and Structural Features on Corrosion Behavior of Nickel-tungsten Alloys, J. Solid State Electrochem., 2009, vol. 13, pp. 263–275.

    Article  Google Scholar 

  111. Sridhar, T.M., Eliaz, N., and Gileadi, E., Electroplating of Ni4W, Electrochem. Solid-State Lett., 2005, vol. 8, pp. C58–C61.

    Article  Google Scholar 

  112. Yamasaki, Y., High-Strength Nanocrystalline Ni-W Alloys Produced by Electrodeposition and Their Embrittlement Behaviors During Grain Growth, Scripta Mater., 2001, vol. 44, pp. 1497–1502.

    Article  Google Scholar 

  113. Kimoto, Y., Giga, A., Ohkubo, T., Takigawa, Y., Hono, K., and Higashi, K., Ni-W Amorphous/Nanocrystalline Duplex Composite Produced by Electrodeposition, Mater. Trans., JIM, 2007, vol. 48, pp. 996–1000.

    Article  Google Scholar 

  114. Tsyntsaru, N., Bobanova, J., Ye, X., Cesiulis, H., Dikusar, A., Prosycevas, I., and Celis, J.-P., Irontungsten Alloys Electrodeposited under Direct Current from Citrate-ammonia Plating Baths, Surf. Coat. Technol., 2009, vol. 203, pp. 3136–3141.

    Article  Google Scholar 

  115. Younes, O. and Gileadi, E., Electroplating of High Tungsten Content Ni/W Alloys, Electrochem. Solid-State Lett., 2000, vol. 3, pp. 543–545.

    Article  Google Scholar 

  116. Zakharov, E.N., Gamburg, Yu.D., Goryunov, G.E., and Lyakhov, B.F., Effect of Cations of Alkali Metals and Ammonium on the Process of Deposition and Structure of Iron-tungsten Alloys, Russ. J. Electrochem., 2006, vol. 42, pp. 895–900.

    Article  Google Scholar 

  117. Pisarek, M., Janik-Czachor, M., and Donten, M., Local Characterization of Electrodeposited Ni-W Amorphous Alloy by Auger Microanalysis, Surf. Coat. Technol., 2008, vol. 202, pp. 1980–1984.

    Article  Google Scholar 

  118. Li, H., Li, H.X., and Deng, J.-F., The Crystallization Process of Ultrafine Ni-B Amorphous Alloy, Mater. Lett., 2001, vol. 50, pp. 41–46.

    Article  Google Scholar 

  119. Yamasaki, T., Schlossmacher, P., Ehrlich, K., and Ogino, Y., Nanocrystallization and Mechanical Properties of an Amorphous Electrodeposited Ni75W25 Alloy, Mater. Sci. Forum, 1998, vols. 269–272, pp. 975–980.

    Article  Google Scholar 

  120. Pekala, M., Donten, M., and Stojek, Z., Crystallization Study of Amorphous Ni-W Alloys, Mater. Sci. Eng. A, 1997, vols. 226–228, pp. 125–127.

    Google Scholar 

  121. Capel, H., Shipway, P.H., and Harris, S.J., Sliding Wear Behaviour of Electrodeposited Cobalt-tungsten and Cobalt-tungsten-iron Alloys, Wear, 2003, vol. 255, pp. 917–923.

    Article  Google Scholar 

  122. Juskenas, R., Valsiunas, I., Pakstas, V., and Giraitis, R., On the State of W in Electrodeposited Ni-W Alloys, Electrochim. Acta, 2009, vol. 54, pp. 2616–2620.

    Article  Google Scholar 

  123. Mun, S.-J., Kim, M., Yim, T.-H., Lee, J.-H., and Kang, T., Mechanical and Structural Characteristics of Electrodeposited Ni-Fe-W Alloy after Heat-treatment, J. Electrochem. Soc., 2010, vol. 157, pp. D177–D180.

    Article  Google Scholar 

  124. He, F.-J., Lei, J.-T., Lu, X., and Huang, Y.-N., Friction and Wear Behavior of Electrodeposited Amorphous Fe-Co-W Alloy Deposits, Trans. Nonferrous Met. Soc. China, 2004, vol. 14, pp. 901–906.

    Google Scholar 

  125. Su, F.-H. and Huang, P., Microstructure and Tribological Property of Nanocrystalline Co-W Alloy Coating Produced by Dual-pulse Electrodeposition, Mater. Chem. Phys., 2012, vol. 134, pp. 350–359.

    Article  Google Scholar 

  126. Hamid, A.Z., Electrodeposition of Cobalt-tungsten Alloys from Acidic Bath Containing Cationic Surfactants, Mater. Lett., 2003, vol. 57, pp. 2558–2564.

    Article  Google Scholar 

  127. Mulukutla, M., Kommineni, V.K., and Harimkar, S.P., Pulsed Electrodeposition of Co-W Amorphous and Crystalline Coatings, Appl. Surf. Sci., 2012, vol. 258, pp. 2886–2893.

    Article  Google Scholar 

  128. He, F., Yang, J., Le, T., and Gu, Ch., Structure and Properties of Electrodeposited Fe-Ni-W Alloys with Different Levels of Tungsten Content: A Comparative Study, Appl. Surf. Sci., 2007, vol. 253, pp. 7591–7598.

    Article  Google Scholar 

  129. Quiroga, A.M.P., Ribotta, S.B., Folquer, M.E., Gassa, L.M., Benitez, G., Vela, M.E., and Salvarezza, R.C., Ni-W Coatings Electrodeposited on Carbon Steel: Chemical Composition, Mechanical Properties and Corrosion Resistance, Electrochim. Acta, 2011, vol. 56, pp. 5898–5903.

    Article  Google Scholar 

  130. Seong-Jae Mun, Minsoo Kim, Tae-Hong Yim, Jae-Ho Lee, and Tak Kanga, Mechanical and Structural Characteristics of Electrodeposited Ni-Fe-W Alloy after Heat-Treatment, J. Electrochem. Soc., 2010, vol. 157, pp. 177–180.

    Google Scholar 

  131. Brooman, E.W., Wear Behavior of Environmentally Acceptable Alternatives to Chromium Coatings: Cobalt Based and Other Coatings, Met. Finish., 2002, vol. 102, pp. 42–54.

    Article  Google Scholar 

  132. Rabinowicz, E., Friction and Wear of Materials, New York: Tipogr. John Wiley.

  133. Kumar, K.S., Van Swygenhoven, H., and Suresh, S., Mechanical Behavior of Nanocrystalline Metals and Alloys, Acta Mater., 2003, vol. 51, pp. 5743–5774.

    Article  Google Scholar 

  134. Buckley, D.H., Surface Effects in Adhesion, Friction, Wear and Lubrication, in Tribology series No. 5, Tipogr. Elsevier, 1981.

  135. Wang, L., Gaoa, Y., Xua, T., and Xuea, Q.A., Comparative Study on the Tribological Behavior of Nanocrystalline Nickel and Cobalt Coatings Correlated with Grain Size and Phase Structure, Mater. Chem. Phys., 2006, vol. 99, pp. 96–103.

    Article  Google Scholar 

  136. Gamburg, Yu.D. and Zaharov, E.N., The Effect of Hydrogen on Amorfization of Iron-Tungsten Alloys Produced by Electrochemical Synthesis, Russ. J. Electrochem., 2008, vol. 44, pp. 736–740.

    Article  Google Scholar 

  137. Tsyntsaru, N.I., Bobanova, Zh.I., Kroitoru, D.M., Cheban, V.F., Poshtaru, G.I., and Dikusar, A.I., Effect of a Multilayer Structure and Lubrication on the Tribological Properties of Coatings of Fe-W Alloys, Surf. Eng. Appl. Electrochem., 2010, vol. 46, pp. 538–546.

    Article  Google Scholar 

  138. Loewe, H., Ehrfeld, W., and Diebel, J., Ultraprecision Microelectroforming of Metals and Metal Alloys, Proceeding of SPIE, Micromachining and Micro-fabrication Process Technology III, 1997, vol. 3223, pp. 168–487.

    Article  Google Scholar 

  139. Singh, V.B., Singh, L.C., and Tikoo, P.K., Studies on Electrodeposition of Nickel-Cobalt-Tungsten Alloys, J. Electrochem. Soc., 1980, vol. 127, pp. 590–596.

    Article  Google Scholar 

  140. Frantsevich, I.N., Teodorovich, O.K., Buzhenova, L.V., and Minakova, R.V., Loss of Hardness of the Tungsten-Nickel-Iron Alloy During Heating. Article II, Powder Metall. Met. Ceram., 1967, vol. 6, pp. 920–925.

    Article  Google Scholar 

  141. Bersirova, O., Cesiulis, H., Donten, M., Krolikowski, A., Stoek, Z., and Baltrunas, G., Corrosion and Anodic Behavior of Electrodeposited Ni-Mo Alloys, Physicochemical Mechanics of Materials, 2004, no. 4, pp. 620–625.

  142. Safonov, V.A., Vykhodtseva, L.N., Edigaryan, A.A., Aliev, A.D., Molodkina, E.B., Danilov, A.I., Lubnin, E.N., and Polukarov, Y.M., Corrosion-Electrochemical Behavior of Chromium Deposits Obtained from Sulfuric Acid Solutions Containing Oxalates, Russ. J. Electrochem., 2001, vol. 37, pp. 127–134.

    Article  Google Scholar 

  143. Sinkeviciute, J., Corrosion Study of Electrodeposited W and Mo Alloys with Iron Group Metals, PhD Theses, Vilnius: Tipogr. Vilnius University, 2009.

    Google Scholar 

  144. Elezovic, N., Grgur, B.N., Krstajic, N.V., and Jovic, V.D., Electrodeposition and Characterization of Fe-Mo Alloys as Cathodes for Hydrogen Evolution in the Process of Chlorate Production, J. Serb. Chem. Soc., 2005, vol. 70, no. 6, pp. 879–889.

    Article  Google Scholar 

  145. Cesiulis, H. and Budreika, A., Hydrogen Evolution and Corrosion of W and Mo Alloys with Co and Ni, Physicochemical Mechanics of Materials, 2010, no. 8, pp. 808–814.

  146. Cesiulis, H., Sinkevičiūtė, J., Bersirova, O., and Ponthiaux, P., Tribocorrosion Testing of Self-Passivating Molybdenum and Tungsten Alloys Containing Cobalt and Iron, BALTTRIB’ 2009: Int. conf. TB, Proceedings, 2009, pp. 253–258.

  147. Hosseini, M.G., Abdolmaleki, M., Ebrahimzadesh, H., and Seyed Sadjadi, S.A., Effect of 2-butene-1,4-diol on the Nanostructure and Corrosion Resistance Properties of Electrodeposited Ni-W-B Coatings, Int. J. Electrochem. Sci., 2011, vol. 6, pp. 1189–1205.

    Google Scholar 

  148. Kublanovsky, V., Bersirova, O., Dikusar, A., Bobanova, Zh., Cesiulis, H., Sinkeviciute, J., and Prosycevas, I., Electrodeposition and Corrosion Properties of Nanocrystalline Fe-W Alloys, Physicochemical Mechanics of Materials, 2008, no. 7, pp. 308–314.

  149. Obradovic, M., Stevanovic, J., Despic, A., Stevanovic, R., and Stoch, J., Characterization and Corrosion Properties of Electrodeposited Ni-W Alloys, J. Serb. Chem. Soc., 2001, vol. 66, pp. 899–912.

    Google Scholar 

  150. Galikova, Z., Chovancova, M., and Danielik, V., Properties of Ni-W Alloy Coatings on Steel Substrate, Chem. Pap., 2006, vol. 60, pp. 353–359.

    Article  Google Scholar 

  151. Tharamani, C.N., Beera, P., Jayaram, V., Begum Noor Shahina, and Mayanna, S.M., Studies on Electrodeposition of Fe-W Alloys for Fuel Cell Applications, Appl. Surf. Sci, 2006, vol. 253, pp. 2031–2037.

    Article  Google Scholar 

  152. Yao, S., Zhao, S., Guo, H., and Kowaka, M., A New Amorphous Alloy Deposit with High Corrosion Resistance, Corrosion, 1996, vol. 52, pp. 183–186.

    Article  Google Scholar 

  153. Myung, N.V., Park, D.-Y., Yoo, B.Y., and Sumodjo, P.T.A., Development of Electroplated Magnetic Materials for MEMS, J. Magn. Magn. Mater., 2003, vol. 265, pp. 189–198.

    Article  Google Scholar 

  154. Myung, N.V., Park, D.-Y., Yang, H., Schwartz, M., Judy, J.W., Yang, C.-K., and Nobe, K., Electrodeposited Hard Magnetic thin Films for MEMS Applications, Proc. Electrochem. Soc., 2000, PV2000-29, pp. 506–520.

    Google Scholar 

  155. Yang, H.H., Myung, N.V., Lee, J., Park, D.Y., Yoo, B.Y., Schwartz, M., Nobe, K., and Judy, J.W., Ferromagnetic Micromechanical Magnetometer, Sens. Actuators A, 2002, vols. 97–98, pp. 88–97.

    Google Scholar 

  156. Wei, G., Ge, H., Zhu, X., Wu, Q., Yu, J., and Wang, B., Effect of Organic Additives on Characterization of Electrodeposited Co-W thin Films, Appl. Surf. Sci., 2007, vol. 253, pp. 7461–7466.

    Article  Google Scholar 

  157. Admon, U., Dariel, M.P., Gunbaum, E., and Lodder, J.C., Magnetic Properties of Electrodeposited Co-W Thin Films, J. Appl. Phys., 1987, vol. 62, pp. 1943–1948.

    Article  Google Scholar 

  158. Park, D.Y. and Ko, J.M., Magnetic Properties of Nanocrystalline CoW Thin Film Alloys Electrodeposited from Citrate Baths, J. Korean Electrochem. Soc., 2003, vol. 6, pp. 236–241.

    Article  Google Scholar 

  159. Sasikumar, D. and Ganesan, S., Effect of Temperature and Current Density in Electrodeposited Co-W Magnetic Nano Thin Film, Dig. J. Nanomater. Bios., 2010, vol. 5, pp. 477–482.

    Google Scholar 

  160. Chiriac, H., Moga, A.E., Gherasim, C., and Lupu, N., Preparation and Magnetic Properties of Fe-W and Ni-W Composite Coatings, Semiconductor Conference, 2007. CAS 2007. International, 2007, vol. 2, pp. 307–310.

    Google Scholar 

  161. Ge, H., Wu, Q., Wei, G., Wang, X., and Zhou, Q., Effects of Bath Temperature on Electrodeposited Permanent Magnetic Co-Pt-W(P) Films, Bull. Korean Chem. Soc., 2007, vol. 28, pp. 2214–2218.

    Article  Google Scholar 

  162. Esther, P., Kennady, C.J., Saravanan, P., and Venkatachalam, T., Structural and Magnetic Properties of Electrodeposited Ni-Fe-W Thin Films, Journal of Non-Oxide Glasses, 2009, vol. 1, pp. 301–309.

    Google Scholar 

  163. Franz, S., Bestetti, M., Consonni, M., and Cavallotti, P.L., Electrodeposition of Micromagnets of CoPtW(P) Alloys, Microelectron. Eng., 2002, vol. 64, pp. 487–494.

    Article  Google Scholar 

  164. Ng, W.B., Takada, A., and Okada, K., Electrodeposited Co-Ni-Re-W-P Thick Array of High Vertical Magnetic Anisotropy, IEEE Trans. Magn., 2005, vol. 41, pp. 3886–3888.

    Article  Google Scholar 

  165. Fullerton, E.E., Jiang, J.S., and Bader, S.D., Hard/Soft Magnetic Heterostructures: Model Exchange-Spring Magnets, J. Magn. Magn. Mater., 1999, vol. 200, pp. 392–404.

    Article  Google Scholar 

  166. Arul Raj, I. and Vasu, K.I., Transition Metal-Based Hydrogen Electrodes in Alkaline Solution-Electro-Catalysis on Nickel Based Binary Alloy Coatings, J. Appl. Electrochem., 1990, vol. 20, pp. 32–38.

    Article  Google Scholar 

  167. Fan, C., Piron, D.L., Sleb, A., and Paradis, P., Electro-Deposited Nickel-Molybdenum, Nickel-Tungsten, Cobalt-Molybdenum, and Cobalt-Tungsten as Hydrogen Electrodes in Alkaline Water Electrolysis, J. Electrochem. Soc., 1994, vol. 141, pp. 382–387.

    Article  Google Scholar 

  168. Kawashima, A., Akiyama, E., Habazaki, H., and Hashimoto, K., Characterization of Sputter-Deposited Ni-Mo and Ni-W Alloy Electrocatalysts for Hydrogen Evolution in Alkaline Solution, Mater. Sci. Eng. A, 1997, vols. 226–228, pp. 905–909.

    Google Scholar 

  169. Marceta Kaninski, M.P., Saponjic, D.P., Perovic, I.M., Maksic, A.D., and Nikolic, V.M., Electrochemical Characterization of the Ni-W Catalyst Formed in Situ During Alkaline Electrolytic Hydrogen ProductionPart II, Appl. Catal. A, 2011, vol. 405, pp. 29–35.

    Article  Google Scholar 

  170. Wang, M., Wang, Z., Guo, Z., and Li, Z., The Enhanced Electrocatalytic Activity and Stability of NiW Films Electrodeposited under Super Gravity Field for Hydrogen Evolution Reaction, Int. J. Hydrog. Energy, 2011, vol. 36, pp. 3305–3312.

    Article  Google Scholar 

  171. Lua, G., Evans, P., and Zangari, G., Electrocatalytic Properties of Ni-Based Alloys Toward Hydrogen Evolution Reaction in Acid Media, J. Electrochem. Soc., 2003, vol. 150, pp. A551–A557.

    Article  Google Scholar 

  172. Rashkov, R., Arnaudova, M., Avdeev, G., Zielonka, A., Jannakoudakis, P., and Jannakoudakis, A., Theodoridou E. NiW/TiOx Composite Layers as Cathode Material for Hydrogen Evolution Reaction, Int. J. Hydrog. Energy, 2009, vol. 34, pp. 2095–2100.

    Article  Google Scholar 

  173. Hu, H., Fan, Y., and Liu, H., Hydrogen Production in Single-chamber Tubular Microbial Electrolysis Cells Using Non-precious-metal Catalysts, Int. J. Hydrog. Energy, 2009, vol. 34, pp. 8535–8542.

    Article  Google Scholar 

  174. Nenastina, T., Bairachnaya, T., Ved, M., Shtefan, V., and Sakhnenko, N., Electrochemical Synthesis of Catalytic Active Alloys, Functional Materials, 2007, vol. 14, pp. 395–400.

    Google Scholar 

  175. Ved, M., Shtefan, V., Bairachnaya, T., and Sakhnenko, N., New Approach to Catalytic Co-W Alloy Electrodeposition, Functional Materials, 2007, vol. 14, pp. 580–584.

    Google Scholar 

  176. Zabinski, P.R., Kowalik, R., and Piwowarczyk, M., Cobalt-Tungsten Alloys for Hydrogen Evolution in Hot 8M NaOH, Arch. Metall. Mater., 2007, vol. 52, pp. 627–634.

    Google Scholar 

  177. Marceta Kaninski, M.P., Miulovic, S.M., Tasic, G.S., Maksic, A.D., and Nikolic, V.M., A Study on the Co-W Activated Ni Electrodes for the Hydrogen Production from Alkaline Water Electrolysis-Energy Saving, Int. J. Hydrogen Energy, 2011, vol. 36, pp. 5227–5235.

    Article  Google Scholar 

  178. Menz, W., Bacher, W., Harmening, M., and Michel, A., The LIGA Technique-a Novel Concept for Microstructures and the Combination of Si-technologies by Injection Molding, in IEEE Workshop on Micro Electro Mechanical Systems, Nara, Japan: IEEE Press, 1991, pp. 69–73.

    Chapter  Google Scholar 

  179. Bley, P., Menz, W., Bacher, W., Feit, K., Harmening, M., Hein, H., Mohr, J., Schomburg, W.K., and Stark, W., Application of the LIGA Process in Fabrication of Three-dimensional Mechanical Micro-structures, in MicroProcess 91, 1991 International MicroProcess Conference, Namba, S. and Tsurushima, T., Eds., Kanazawa, Japan, 1991, pp. 384–389.

  180. Romankiw, L.T., Electroformation of Electronic Devices, Plat. Surf. Finish, 1997, vol. 84, pp. 10–16.

    Google Scholar 

  181. Guckel, H., Skrobis, K.J., Christenson, T.R., Klein, J., Han, S., Choi, B., and Lovell, E.G., Fabrication of Assembled Micromechanical Components Via Deep X-ray Lithography, in IEEE Workshop on Micro Electro Mechanical Systems, Nara, Japan: IEEE Press, 1991, pp. 74–79.

    Chapter  Google Scholar 

  182. Burbaum, C., Mohr, J., Bley, P., and Ehrfeld, W., Fabrication of Capacitive Acceleration Sensors by the LIGA Technique, Sens. Actuators A, 1991, vols. 25–27, pp. 559–563.

    Google Scholar 

  183. Hemker, K.J. and Last, H., Microsample Tensile Testing of LIGA Nickel for MEMS Applications, Mater. Sci. Eng. A, 2001, vols. 319–321, pp. 882–886.

    Google Scholar 

  184. Buchheit, T.E., Lavan, D.A., Michael, J.R., and Leith, S.D., Microstructural and Mechanical Properties Investigation of Electrodeposited and Annealed LIGA Nickel Structures, Metall. Mater. Trans. A, 2002, vol. 33A, pp. 539–554.

    Article  Google Scholar 

  185. Christenson, T.R., Buchheit, T.E., Schmale, D.T., and Bourcier, R.J., Mechanical and Metallographic Characterization of Liga Fabricated Nickel and 80%Ni-20%Fe, Materials Research Society Symposium Proceedings, 1998, vol. 518, pp. 185–190.

    Article  Google Scholar 

  186. Klement, U., Aust, K.T., Erb, U., and El-Sherik, M., Thermal Stability of Nanocrystalline Ni, Mater. Sci. Eng. A, 1995, vol. 203, pp. 177–186.

    Article  Google Scholar 

  187. Czerwinski, F. and Szpunar, J.A., Controlling the Thermal Stability of Texture in Single-Phase Electro-Deposits, Nanostruct. Mater., 1999, vol. 11, pp. 669–676.

    Article  Google Scholar 

  188. Cho, H.S., Hemker, K.J., Lian, K., and Goettert, J., MEMS 2002 Technical Digest, in 15th IEEE International Conference on MEMS, 2002, pp. 439–442.

  189. Suresha, S.J., Haj-Taieb, M., Bade, K., Aktaa, J., and Hemker, K.J., The Influence of Tungsten on the Thermal Stability and Mechanical Behavior of Electrodeposited Nickel MEMS Structures, Scr. Mater., 2010, vol. 63, pp. 1141–1144.

    Article  Google Scholar 

  190. Haj-Taieb, M., Haseeb, A.S.M.A., Caulfield, J., Bade, K., Aktaa, J., and Hemker, K.J., Thermal Stability of Electrodeposited LIGA Ni-W Alloys for High Temperature MEMS Applications, Microsyst. Technol., 2008, vol. 14, pp. 1531–1536.

    Article  Google Scholar 

  191. Armstrong, D.E.J., Haseeb, A.S.M.A., Roberts, S.G., Wilkinson, A.J., and Bade, K., Nanoindentation and Micro-mechanical Fracture Toughness of Electrodeposited Nanocrystalline Ni-W Alloy Films, Thin Solid Films, 2012, vol. 520, pp. 4369–4372.

    Article  Google Scholar 

  192. Wang, H., Liu, R., Cheng, F., Cao, Y., Ding, G., and Zhao, X., Electrodepositing Amorphous Ni-W Alloys for MEMS, Microelectron. Eng., 2010, vol. 87, pp. 1901–1906.

    Article  Google Scholar 

  193. Podlaha, E.J., Namburi, L., and Murphy, M.C., Nickel Alloy Electrodeposited Microstructures, Patent Application Publication No. US-2004-0011432-A1, 2004.

  194. Ross, C.A., Electrodeposited Multilayer thin Films, Annu. Rev. Mater. Sci., 1994, vol. 24, pp. 159–188.

    Article  Google Scholar 

  195. Schwarzacher, W. and Lashmore, D.S., Giant Magneto-resistance in Electrodeposited Films, IEEE Trans. Magn., 1996, vol. 32, pp. 3133–3153.

    Article  Google Scholar 

  196. Alper, M., Electrodepozition of Multilayered Nanostructures, Nanostructured Magnetic Materials and Their Applications, Lecture Notes in Physics, vol. 593, Shi, D., Aktas, B., Pust, L., and Mikailov, F., Eds., Berlin: Springer, 2002, pp. 11–128.

    Chapter  Google Scholar 

  197. Fert, A., Barthelemy, A., Galtier, P., Holody, P., Loloee, R., Morel, R., Petroff, F., Schroeder, P., Steren, L.B., and Valet, T., Giant Magnetoresistance in Magnetic Nano-structures. Recent developments, Mater. Sci. Eng. B, 1995, vol. 31, pp. 1–9.

    Article  Google Scholar 

  198. Lee, S.F., Pratt, W.P., Yang, Q., Holody, P., Loloee, R., Schroeder, P.A., and Bass, J., Two-Channel Analysis of CPP-MR Data for Ag/Co and AgSn/Co Multilayers, J. Magn. Magn. Mater., 1993, vol. 118, pp. L1–L5.

    Article  Google Scholar 

  199. Pratt, W.P., Lee, S.F., Holody, P., Yang, Q., Loloee, R., Bass, J., Schroeder, P.A., Giant Magnetoresistance with Current Perpendicular to the Multilayer Planes, J. Magn. Magn. Mater.,@ 1993, vol. 126, pp. 406–409.

    Article  Google Scholar 

  200. Liu, K., Nagodawithana, K., Searson, P.C., and Chien, C.L., Perpendicular Giant Magnetoresistance of Multilayered Co/Cu Nanowires, Phys. Rev. B, 1995, vol. 51, pp. 7381–7385.

    Article  Google Scholar 

  201. Blondel, A., Doudin, B., and Ansermet, J.-P., Comparative Study of the Magnetoresistance of Electrodepo-Sited Co/Cu Multilayered Nanowires Made by Single and Dual Bath Techniques, J. Magn. Magn. Mater., 1997, vol. 165, pp. 34–37.

    Article  Google Scholar 

  202. Piraux, L., George, J.M., Despres, J.F., Leroy, C., Ferain, E., Legras, R., Ounadjela, K., and Fert, A., Giant Magnetoresistance in Magnetic Multilayered Nano-wires, Appl. Phys. Lett., 1994, vol. 65, pp. 2484–2487.

    Article  Google Scholar 

  203. Dubois, S., Beuken, J.M., Piraux, L., Duvail, J.L., Fert, A., George, J.M., and Mauric, J.L., Perpendicular Giant Magnetoresistance of NiFe/Cu and Co/Cu Multilayered Nanowires, J. Magn. Magn. Mater., 1997, vol. 165, pp. 30–33.

    Article  Google Scholar 

  204. Piraux, L., Dubois, J.S., Duvail, J.L., Ounadjela, K., and Fert, A., Arrays of Nanowires of Magnetic Metals and Multilayers: Perpendicular GMR and Magnetic Properties, J. Magn. Magn. Mater., 1997, vol. 175, pp. 127–136.

    Article  Google Scholar 

  205. Pullini, D., Busquets, D., Ruotolo, A., Innocenti, G., and Amigo, V., Insights into Pulsed Electrodeposition of GMR Multilayered Nanowires, J. Magn. Magn. Mater., 2007, vol. 316, pp. e242–e245.

    Article  Google Scholar 

  206. Evans, P.R., Yi, G., and Schwarzacher, W., Current Perpendicular to Plane Giant Magnetoresistance of Multilayered Nanowires Electrodeposited in Anodic Aluminum Oxide Membranes, Appl. Phys. Lett., 2000, vol. 76, pp. 481–484.

    Article  Google Scholar 

  207. Schwarzacher, W., Attenborough, K., Michel, A., Nabiyouni, G., and Meier, J.P., Electrodeposited Nanostructures, J. Magn. Magn. Mater., 1997, vol. 165, pp. 23–29.

    Article  Google Scholar 

  208. Schwarzacher, W., Kasyutich, O.I., Evans, P.R., Darbyshire, M.G., Yi, G., Fedosyuk, V.M., Rousseaux, F., Cambril, E., and Decanini, D., Metal Nanostructures Prepared by Template Electro-deposition, J. Magn. Magn. Mater., 1999, vols. 198–199, pp. 185–190.

    Article  Google Scholar 

  209. Wang, Y.W., Wang, G.Z., Wang, S.X., Gao, T., Sang, H., and Zhang, L.D., Fabrication and Magnetic Properties of Highly Ordered Co16Ag84 Alloy Nanowire Array, Appl. Phys. A, 2002, vol. 74, pp. 577–580.

    Article  Google Scholar 

  210. Wang, Y.W., Zhang, L.D., Meng, G.W., Peng, X.S., Jin, X.Y., and Zhang, J., Fabrication of Ordered Ferromagnetic-Nonmagnetic Alloy Nanowire Arrays and Their Magnetic Property Dependence on Annealing Temperature, J. Phys. Chem. B, 2002, vol. 106, pp. 2502–2507.

    Article  Google Scholar 

  211. Liu, Q.F., Gao, C.X., Xiao, J.J., and Xue, D.S., Size Effects on Magnetic Properties in Fe0.68 Ni0.32 Alloy Nanowire Arrays, J. Magn. Magn. Mater., 2003, vol. 260, pp. 151–155.

    Article  Google Scholar 

  212. Qin, D.H., Wang, C.W., Sun, Q.Y., and Li, H.L., The Effects of Annealing on the Structure and Magnetic Properties of CoNi Patterned Nanowire Arrays, Appl. Phys. A, 2002, vol. 74, pp. 761–765.

    Article  Google Scholar 

  213. Kazeminezhad, I. and Schwarzacher, W., Electrodeposition of NiCu Alloy Nanowires with Arbitrary Composition, Electrochem. Solid-State Lett., 2004, vol. 11, pp. K24–K26.

    Article  Google Scholar 

  214. Huang, Q., Davis, D., and Podlaha, E.J., Electrodeposition of FeCoNiCu Nanowires, J. Appl. Electrochem., 2006, vol. 36, pp. 871–882.

    Article  Google Scholar 

  215. Gupta, M. and Podlaha, E.J., Electrodeposition of CuNiW Alloys: Thin Films, Nanostructured Multilayers and Nanowires, J. Appl. Electrochem., 2010, vol. 40, pp. 1429–1439.

    Article  Google Scholar 

  216. Bairachna, T., Fowle, W., and Podlaha, E.J., Electrochemically Fabricated Nickel-Tungsten Nanowires, ECS Transactions, 220th Meeting of The Electrochemical Society, Boston, MA, Oct, 2011.

  217. Davis, D., Zamanpour, M., Moldovan, M., Young, D., and Podlaha, E.J., Electrodeposited, GMR CoNi-FeCu Nanowires and Nanotubes from Electrolytes Maintained at Different Temperatures, J. Electrochem. Soc., 2010, vol. 157, pp. D317–D322.

    Article  Google Scholar 

  218. Davis, D., Moldovan, M., Young, D., Xie, X., Henk, M., and Podlaha, E.J., Magnetoresistance in Electrodeposited CoNiFe/Cu Multilayered Nanotubes Electrochemical/Chemical Deposition and Etching, Electrochem. Solid-State Lett., 2006, vol. 9, pp. C153–C155.

    Article  Google Scholar 

  219. Pinisetty, D., Davis, D., Podlaha-Murphy, E.J., Murphy, M.C., Karki, A.B., Young, D.P., and Devireddy, R.V., Characterization of Electrodeposited Bismuth-Tellurium Nanowires and Nanotubes, Acta Mater., 2011, vol. 59, pp. 2455–2461.

    Article  Google Scholar 

  220. Fukunaka, Y., Motoyama, M., Konishi, Y., and Ishii, R., Producing Shape-Controlled Metal Nanowires and Nanotubes by an Electrochemical Method Electrochemical/Chemical Deposition and Etching, Electrochem. Solid-State Lett., 2006, vol. 9, pp. C62–C64.

    Article  Google Scholar 

  221. Verbeeck, J., Lebedev, O.I., Van Tendeloo, G., Cagnon, L., and Bougerol, C., Fe and Co Nanowires and Nanotubes Synthesized by Template Electrodeposition: A HRTEM and EELS Study, J. Electrochem. Soc., 2003, vol. 150, pp. E468–E471.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Cesiulis.

Additional information

The article is published in the original.

About this article

Cite this article

Tsyntsaru, N., Cesiulis, H., Donten, M. et al. Modern trends in tungsten alloys electrodeposition with iron group metals. Surf. Engin. Appl.Electrochem. 48, 491–520 (2012). https://doi.org/10.3103/S1068375512060038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375512060038

Keywords

Navigation