Skip to main content
Log in

Study on Desulfurization of Crude Benzene with Microcrystalline Adsorbent

  • Published:
Coke and Chemistry Aims and scope Submit manuscript

Abstract

An increasing number of coking enterprises are challenged by excessive sulfur content in their crude benzene products, which hinders sales and revenue. In this work, microcrystalline adsorbent was used to remove carbon disulfide and thiophene in crude benzene. BET, XRD, XRF and SEM characterization showed that the microcrystalline adsorbent has a large specific surface area, high crystallinity morphology, Si/Al ratio and regeneration stability. By investigating the effects of adsorption time, temperature, adsorbent dosage and regeneration times on the desulfurization performance of microcrystalline adsorbent W1, it was found that the desulfurization effect was mainly affected by time and temperature. When the experimental conditions at 20°C, 7 h, the amount of adsorbent was 4.5 g, the volume of crude benzene was 10 mL, resulting in desulfurization rate of 67% for thiophene, 52% for carbon disulfide, and 62% for total desulfurization, approximately 26% for crude benzene loss rate. The overall desulfurization rate remained stable around 55% after three regenerations, while the rate for rude benzene loss increased to roughly 30%. The results indicate that the microcrystalline adsorbent exhibits significant potential for desulfurization of crude benzene, providing valuable guidance and reference for coking enterprises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Wang, J.W., Zhang, K., Mao, X.Yi., Zhao, X.H., and Ding, Ch.M., Intrinsic kinetics of coking crude benzene hydrodesulfurization on a Ti Modified Co-Mo-P/γ-Al2O3 Catalyst, Appl. Mech. Mater., 2014, vol. 665, pp. 241–246. https://doi.org/10.4028/www.scientific.net/AMM.665.241

  2. Huang, F. and Wang, J., Study on absorbents of thiophene purificationin coking aromatic hydrocarbon, Chem. Eng. Oil Gas, 2009, vol. 38, no. 4, pp. 212–216. https://doi.org/10.3969/j.issn.1007-3426.2009.03.009

    Article  CAS  Google Scholar 

  3. Yang, R., Comparison between crude benzol acid washing process and hydro-refining process of coking waste water treatment process, Fuel Chem. Processes, 2006, vol. 37, no. 6, pp. 41–43. https://doi.org/10.16044/j.cnki.rlyhg.2006.06.016

    Article  Google Scholar 

  4. Cui, T.Y., Rajendran, A., Fan, H.X., Feng, J., and Li, W.Y., Review on hydrodesulfurization over zeolite-based catalysts, Ind. Eng. Chem. Res., 2021, vol. 60, no. 8, pp. 3295–3323. https://doi.org/10.1021/acs.iecr.0c06234

    Article  CAS  Google Scholar 

  5. Anokhina, E.A., Yakutin, R.V., and Timoshenko, A.V., Purifying benzene from thiophene by extractive distillation using columns with side withdrawal in the vapor phase, Theor. Found. Chem. Eng., 2021, vol. 55, no. 5, pp. 880–887. https://doi.org/10.1134/s0040579521040205

    Article  CAS  Google Scholar 

  6. Liao, J., Bao, L., Wang, W., Xie, Yu., Chang, J., Bao, W., and Chang, L., Preparation of AlCl3/silica gel catalyst for simultaneously removing thiophene and olefins from coking benzene by inclosed grafting method, Fuel Process. Technol., 2013, vol. 117, pp. 38–43. https://doi.org/10.1016/j.fuproc.2013.02.017

    Article  CAS  Google Scholar 

  7. Akopyan, A.V., Grigoriev, D.A., Polikarpova, P.L., Eseva, E.A., Litvinova, V.V., and Anisimov, A.V., Ozone-assisted oxidative desulfurization of light oil fractions, Pet. Chem., 2017, vol. 57, no. 10, pp. 904–907. https://doi.org/10.1134/S0965544117100024

    Article  CAS  Google Scholar 

  8. Desai, K., Dharaskar, S., Khalid, M., and Gedam, V., Effectiveness of ionic liquids in extractive–oxidative desulfurization of liquid fuels: A review, Chem. Pap., 2022, vol. 76, no. 4, pp. 1989–2028. https://doi.org/10.1007/s11696-021-02038-3

    Article  CAS  Google Scholar 

  9. Ren, M., Fan, F., Zhou, B., Liang, X., and Yang, Z., Dynamic simulation of adsorption desulfurization from diesel fuel over activated carbon in the fixed bed, Chem. Eng. Res. Des., 2022, vol. 183, pp. 274–284. https://doi.org/10.1016/J.CHERD.2022.04.029

    Article  CAS  Google Scholar 

  10. Georgiadis, A.G., Charisiou, N.D., Gaber, S., Polychronopoulou, K., and Goula, M.A., Adsorption of hydrogen sulfide at low temperatures using an industrial molecular sieve: An experimental and theoretical study, ACS Omega, 2021, vol. 6, pp. 14774–14787. https://doi.org/10.1021/acsomega.0c06157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Saleh, T.A., Sulaiman, K.O., Al-Hammadi, S.A., Dafalla, H., and Danmaliki, G.I., Adsorptive desulfurization of thiophene, benzothiophene and dibenzothiophene over activated carbon manganese oxide nanocomposite: With column system evaluation, J. Cleaner Prod., 2017, vol. 154, pp. 401–412. https://doi.org/10.1016/j.jclepro.2017.03.169

    Article  CAS  Google Scholar 

  12. Sun, X., Zhou, N., and Liu, M., Adsorption desulfurization over porous carbons derived from ZIF-67 and AC, J. Solid State Chem., 2023, vol. 322, p. 123985. https://doi.org/10.1016/j.jssc.2023.123985

    Article  CAS  Google Scholar 

  13. Wu, M., Guo, E., Li, Q., Mi, J., and Fan, H., Mesoporous Zn-Fe-based binary metal oxide sorbent with sheet-shaped morphology: Synthesis and application for highly efficient desulfurization of hot coal gas, Chem. Eng. J., 2020, vol. 389, p. 123750. https://doi.org/10.1016/j.cej.2019.123750

    Article  CAS  Google Scholar 

  14. Dehghan, R. and Anbia, M., Zeolites for adsorptive desulfurization from fuels: A review, Fuel Process. Technol., 2017, vol. 167, pp. 99–116. https://doi.org/10.1016/j.fuproc.2017.06.015

    Article  CAS  Google Scholar 

  15. Zhou, T., Wang, S., Zhang, C., Yao, Yu., Chen, Ya., Lu, S., and Liao, X., Preparation of Ti-MOFs for efficient adsorptive desulfurization: Synthesis, characterization, and adsorption mechanisms, Fuel, 2023, vol. 339, p. 127396. https://doi.org/10.1016/j.fuel.2023.127396

    Article  CAS  Google Scholar 

  16. Deng, C. and Zhu, M., New type nitrogen-doped carbon material applied to deep adsorption desulfurization, Energy Fuels, 2020, vol. 34, no. 8, pp. 9320–9327. https://doi.org/10.1021/acs.energyfuels.0c00854

    Article  CAS  Google Scholar 

  17. Jian, X., Hou, X., Xu, W., and Liu, S., Study on the adsorption and desorption of CS2 on activated carbon under different operating conditions, J. Forestry Eng., 2021, vol. 6, no. 4, pp. 114–119. https://doi.org/10.13360/j.issn.2096-1359.202011006

    Article  Google Scholar 

  18. Yang, J., Juan, P., Shen, Z., Guo, R., Jia, J., Fang, H., and Wang, Ya., Removal of carbon disulfide (CS2) from water via adsorption on active carbon fiber (ACF), Carbon, 2006, vol. 44, no. 8, pp. 1367–1375. https://doi.org/10.1016/j.carbon.2005.11.016

    Article  CAS  Google Scholar 

  19. Tan, X., Yu, R., Yang, N., and Wang, X., Removal of thiophene from coking benzene through liquid adsorption, J. Shandong Inst. Technol., 2000, vol. 14, no. 4, pp. 5–9. https://doi.org/10.13367/j.cnki.sdgc.2000.04.002

    Article  Google Scholar 

  20. Bao, L., Liao, J.J., Chen, Y.Z., Cao, Q., and Bao, W.R., Modification of SBA-15 zeolite by acid and metal ions and its adsorptive behavior for thiophene, J. Taiyuan Univ. Technol., 2014, vol. 45, no. 3, pp. 320–323. https://doi.org/10.3969/j.issn.1007-9432.2014.03.009

    Article  Google Scholar 

  21. Zhang, Y.W., Adsorption and removal of thiophene from coking benzene by TS-1 molecular sieve, China Pet. Chem. Ind., 2012, vol. 259, no. 9, pp. 27–28.

    Google Scholar 

  22. Li, Yu-X., Jiang, W.-J., Tan, P., Liu, X.-Q., Zhang, D.-Yu., and Sun, L.-B., What matters to the adsorptive desulfurization performance of metal-organic frameworks, J. Phys. Chem. C, 2015, vol. 119, no. 38, pp. 21969–21977. https://doi.org/10.1021/acs.jpcc.5b07546

    Article  CAS  Google Scholar 

  23. Oliveira, M.L.M., Miranda, A.A.L., Barbosa, C.M.B.M., Cavalcante Jr., C.L., Azevedo, D.C.S., and Rodriguez-Castellon, E., Adsorption of thiophene and toluene on NaY zeolites exchanged with Ag(I), Ni(II) and Zn(II), Fuel, 2009, vol. 88, no. 10, pp. 1885–1892. https://doi.org/10.1016/j.fuel.2009.04.011

    Article  CAS  Google Scholar 

  24. Wang, X., Zhang, R., Li, Q., Mi, J., and Wu, M., Insights into H2S-absorption and oxidation-regeneration behavior of Ni-doped ZnO-based sorbents supported on SBA-15 for desulfurization of hot coal gas, Fuel, 2023, vol. 332, p. 126052. https://doi.org/10.1016/j.fuel.2022.126052

    Article  CAS  Google Scholar 

  25. Wei, F., Zhang, X., Liao, J., Guo, J., Bao, W., and Chang, L., Desulfurization mechanism of an excellent Cu/ZnO sorbent for ultra-deep removal of thiophene in simulated coke oven gas, Chem. Eng. J., 2022, vol. 446, p. 137140. https://doi.org/10.1016/j.cej.2022.137140

    Article  CAS  Google Scholar 

  26. Bai, T., Wang, X., Yang, M., Duan, X., Mi, J., and Wu, M., Study on release and inhibition behavior of COS during high-temperature gas, desulfurization process using Zn-based oxide derived from hydrotalcite, CIESC J., 2023, vol. 74, no. 4, pp. 1772–1780. https://doi.org/10.11949/0438-1157.20221524

    Article  Google Scholar 

  27. Dou, J., Zhao, Yo., Tahmasebi, A., and Yu, J., Sulfidation and regeneration of iron-based sorbents supported on activated-chars prepared by pressurized impregnation for coke oven gas desulfurization, Korean J. Chem. Eng., 2016, vol. 33, no. 10, pp. 2849–2857. https://doi.org/10.1007/s11814-016-0148-9

    Article  CAS  Google Scholar 

  28. Liu, X. and Wang, R., Effective removal of hydrogen sulfide using 4A molecular sieve zeolite synthesized from attapulgite, J. Hazard. Mater., 2017, vol. 326, pp. 157–164. https://doi.org/10.1016/j.jhazmat.2016.12.03

    Article  CAS  PubMed  Google Scholar 

  29. Wei, F., Guo, X., Liao, J., Bao, W., and Chang, L., Ultra-deep removal of thiophene in coke oven gas over Y zeolite: Effect of acid modification on adsorption desulfurization, Fuel Process. Technol., 2021, vol. 213, no. 1, p. 106632. https://doi.org/10.1016/j.fuproc.2020.106632

    Article  CAS  Google Scholar 

  30. Ye, Q., Integrated technology of deep desulfurization and naphthalene removal of coke oven gas based on microcrystalline adsorption process, Shaxi Metall., 2022, vol. 45, no. 5, pp. 69–70. https://doi.org/10.16525/j.cnki.cn14-1167/tf.2022.05.026

    Article  Google Scholar 

  31. Luo, H., Selection of processes for fine desulfurization of coke oven gas, Fuel Chem. Processes, 2021, vol. 52, no. 6, pp. 32–33. https://doi.org/10.16044/j.cnki.rlyhg.2021.06.010

    Article  CAS  Google Scholar 

  32. Tian, R., Wang, G., Zeng, D., Qiu, J., and Tian, Y., Preparation of Ce-CeY adsorbent and its study on removal of thiophen in coking crude benzol by adsorption, Fuel Chem. Processes, 2012, vol. 43, no. 1, pp. 48–52. https://doi.org/10.16044/j.cnki.rlyhg.2012.01.018

    Article  Google Scholar 

Download references

Funding

This research is supported by the Hubei Technological Innovation Special Fund (grant no. 2020ZYYD019). The support of Shanghai Shentan Environmental Protection New Materials Co., Ltd. and CITIC Pacific Special Steel Group are also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijie Wang.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zichun Guo, Wang, S., Fang, H. et al. Study on Desulfurization of Crude Benzene with Microcrystalline Adsorbent. Coke Chem. 66, 321–330 (2023). https://doi.org/10.3103/S1068364X23700916

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068364X23700916

Keywords:

Navigation