Skip to main content
Log in

The effect of structural state and temperature on mechanical properties and deformation mechanisms of WC-Co hard alloy

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

The paper is dedicated to memory of Prof. Silvana Lux of Johannesburg (South African Republic), a prominent researcher in the field of powder metallurgy and hard alloys, whose talent and managerial abilities have made possible joint investigations of researchers from Ukraine and SAR.

Abstract

The publications reporting systematic investigations of the effect of structural state of WC-Co hard alloys (the cobalt binder content, WC grains size and contiguity) and temperature on mechanical properties and deformation mechanisms have been reviewed and generalized. The ductile-brittle transition, strain hardening, special features of WC-Co alloys deformations in various temperature ranges, and specificity of mechanical properties of the alloys with submicron WC grains have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Milman, Yu.V., Luyckx, S., and Northrop, J.T., Influence of temperature, grain size, and cobalt content on the hardness of WC/Co alloys, Int. J. Refract. Met. Hard Mater., 1999, vol. 17, nos. 1–3, pp. 39–44.

    Article  CAS  Google Scholar 

  2. Milman, Yu.V., Chugunova, S., Goncharuck, V., Luyckx, S., and Northrop, J.T., Low and high temperature hardness of WC-6 wt % Co alloys, Ibid., 1997, vol. 15, pp. 97–101.

    Article  CAS  Google Scholar 

  3. Milman, Yu.V., Luyckx, S., Goncharuck, V.A., and Northrop, J.T., Mechanical properties in bending tests and mechanical behaviour of submicron and micron WC-Co grades at elevated temperatures, 15th Int. Plansee Seminar, Reutte, 2001, G. Kneriger, P. Rödhammer, and H. Wildner, Eds., Reutte: Plansee Holding AG, 2001, vol. 2 (P/M Hard Mat.), pp. 75–90.

    Google Scholar 

  4. Milman Yu. V., Luyckx S., Goncharuck, A.V., and Northrop, J.T., Results from bending tests on submicron and micron WC-Co grades at elevated temperatures, Int. J. Refract. Met. Hard Mater., 2002, vol. 20, pp. 71–79.

    Article  CAS  Google Scholar 

  5. Milman, Yu.V., Luyckx, S., Goncharuck, V.A., Chugunova, S.I., Goncharova, I.V., and Northrop, J.T., Mechanicalproperties and mechanism of deformation of WC-Co hard alloys in a wide temperature range, Electron microscopyand strength of materials, 2001, issue 11, pp. 164–176.

    Google Scholar 

  6. Milman, Yu.V., Chugunova, S.I., Goncharova, I.V., and Luyckx, S., Determination of ductility and stress-straincurve of WC-based hard metals by indentation method, Sci. Sintering, 1997, vol. 29, no. 3, pp. 155–161.

    CAS  Google Scholar 

  7. Milman, Yu.V., Luyckx, S., Chugunova, S.I., Goncharova, I.V., and Dub, S.N., Peculiarities of plastic deformation of WC single crystal, in Proc. Int. Conf. on Science for Materials in the frontier of Centuries: Advantages and Challenges, Kyiv, Ukraine, 4–8 Nov., 2002, pp. 556–557.

    Google Scholar 

  8. Luyckx, S., Slip system of tungsten carbide crystal at room temperature, Acta Met., 1970, vol. 18, pp. 233–236.

    Article  CAS  Google Scholar 

  9. Milman, Yu.V., Galanov, B.A., and Chugunova, S.I., Plasticity characteristic obtained through hardness measurement, Acta Met. Mater., 1993, vol. 41, no. 9, pp. 2523–2532.

    Article  CAS  Google Scholar 

  10. Milman, Yu.V., Plasticity characteristic obtained by indentation, J. Phys. D: App. Phys., 2008, vol. 41, art. 074013.

  11. Milman, Yu.V., Dub, S., and Golubenko, A., Plasticity characteristic obtained through instrumental indentation, Mater. Res. Soc. Symp. Proc., 2008, vol. 1049, pp. 123–128.

    Google Scholar 

  12. Milman, Yu.V., Chugunova, S.I., and Goncharova, I.V., Plasticity defined indentation and theoretical plasticity of materials, Izvestiya RAS, Ser. Physics, 2009, vol. 73, no. 9, pp. 1282–1289.

    CAS  Google Scholar 

  13. Milman, Yu.V., Golubenko, A.A., and Dub, S.N., Indentation size effect in nanohardness, Acta Materialia, 2011, vol. 59, pp. 7480–7487.

    Article  CAS  Google Scholar 

  14. Lee, M., High-temperature hardness of tungsten carbide, Metall. Mater. Trans. A, 1983, vol. 14, no. 8, pp. 1625–1629.

    Article  Google Scholar 

  15. Laugier, M.T., Elevated temperature properties of WC-Co cemented carbides, Mater. Sci. Eng. A, 1988, vol. 105–106, pp. 363–367.

    Article  Google Scholar 

  16. Lee, H.C. and Gurland, J., Hardness and deformation of cemented tungsten carbide, Ibid., 1978, vol. 33, pp. 125–133.

    Article  CAS  Google Scholar 

  17. Sigl, L.S. and Exner, H.E., The flow stress and hardness of metal-reinforced brittle composites, Ibid., 1989, vol. 108, pp. 121–129.

    Article  Google Scholar 

  18. Ioffe, A.F., Izbrannye trudy, T. 1 (Selected papers, vol. 1), Leningrad: Nauka, 1974.

    Google Scholar 

  19. Trefilov, V.I., Milman, Yu.V., and Firstov, S.A., Fisicheskie osnovy prochnosti tugoplavkikh metallov (Physical principles of strength of refractory metals), Kiev: Naukova Dumka, 1975.

    Google Scholar 

  20. Ristich, M. M., Trefilov, V.I., Milman, Yu.V., Gridneva, I.V., and Duzhevich, D., Structure and mechanical properties of sintered materials, Beograd, Serbia: Izd. Serbian Acad. Sci. and Arts, 1992.

    Google Scholar 

  21. Milman, Yu.V., Chugunova, S.I., Goncharova, I.V., Chudoba, T., Lojkowski, W., and Gooch, W., Temperature dependence of hardness in silicon-carbide ceramics with different porosity, Int. J. Refract. Met. Hard Mater., 1999, vol. 17, no. 5, pp. 361–368.

    Article  CAS  Google Scholar 

  22. Milman, Yu.V., Ivashchenko, R. K., and Zakharova, N. P., Mechanical properties of sintered materials. II. The effect of porosity on the plasticity of powder alloys, Powder Metallurgy and Metal Ceramics, 1991, vol. 30, no. 3, pp. 93–100.

    Google Scholar 

  23. Šalak, A., Miloškovich, V., Dudrova, E., and Rudnayova, E., The dependence of mechanical properties of sintered iron compacts upon porosity, Powder Metal. Int., 1974, vol. 6, pp. 128–132.

    Google Scholar 

  24. Cope, L.H., The mechanical properties of nuclear cermets, Metallurgia, 1965, vol. 72, pp. 165–171.

    CAS  Google Scholar 

  25. Ludwik, P., Elemente der technolgyschen Mechanik, Berlin: Springer, 1909.

    Book  Google Scholar 

  26. Novikov, N.V., Bondarenko, V.P., and Golovchan, V.T., High-Temperature Mechanical Properties of WC-Co Hard Metals (Review), J. Superhard Mater., 2007, vol. 29, no. 5, 261–280.

    Article  Google Scholar 

  27. Fang, Z.Z., Wang, X., Ryu, T., Hwang, K.S., and Sonh, H.Y., Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide-A review, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, no. 2, pp. 288–299.

    Article  CAS  Google Scholar 

  28. Upadhyaya, G.S., Materials science of cemented carbides-an overview, Materials & Design, 2001, vol. 22, no. 5, pp. 483–489.

    Article  CAS  Google Scholar 

  29. Shi, X.L., Shao, G.O., Duan, X.L., Yuan. R.Zh., and Lin, H.H., Mechanical properties, phases and microstructure of ultrafine hardmetals prepared by WC-6.29Co nanocrystalline composite, Mater. Sci. Eng. A, 2005, vol. 392, nos. 1–2, pp. 335–339.

    Article  Google Scholar 

  30. Jia, K., Fischer, T.E., and Gallois, B., Microstructure, hardness, and toughness of nanostructured and conventional WC-Co composites, Nanostruct. Mater., 1998, vol. 10, no. 5, pp. 875–891.

    Article  CAS  Google Scholar 

  31. Mahmoodan, M., Aliakbarzaden, H., and Shahri, F., Effect of Cr3C2 and VC on the mechanical and structure properties of sintered WC-10 wt % Co nanopowders, World J. Nano Sci. Eng., 2013, vol. 3, pp. 35–39.

    Article  CAS  Google Scholar 

  32. Richter, V. and Ruthendorf, M.V., On hardness and toughness of ultrafine and nanocrystalline hard materials, Int. J. Refract. Met. Hard Mater., 1999, vol. 17, nos. 1–3, pp. 141–152.

    Article  CAS  Google Scholar 

  33. Sivaprahasam, D., Chandrasekar, S.B., and Sundaresan, R., Microstructure and mechanical properties of nanocrystalline WC-12Co consolidated by spark plasma sintering, Ibid., 2007, vol. 25, no. 2, pp. 144–152.

    Article  CAS  Google Scholar 

  34. Carroll, D.F., Sintering and microstrutural development in WC/Co-based alloys made with superfine WC powder, ibid., 1999, vol. 17, nos. 1–3, pp. 123–132.

    Article  CAS  Google Scholar 

  35. Kim, H.-Ch., Oh, D.-Y., and Shon, I.-S., Sintering of nanophases WC-15 vol.%Co hard metals by rapid sintering process, Ibid., 2004, vol. 22, nos. 4–5, pp. 197–203.

    Article  Google Scholar 

  36. Jia, Ch., Sun, L., Tang, H., and Qu, X., Hot pressing of nanometer WC-Co powder, ibid., 2007, vol. 25, no. 1, pp. 53–56.

    Article  CAS  Google Scholar 

  37. Qiao, Zh., Ma, X., Zhao, W., Tang, H., and Zhao, B., Nanostructured novel cemented hard alloy obtained by mechanical alloying and hot-pressing sintering and its applications, J. Alloys Comp., 2008, vol. 562, nos. 1–2, pp. 416–420.

    Article  Google Scholar 

  38. Shou-rong L., Microstructure parameters of WC-Co cemented carbide, Transactions of Materials and Heat Treatment, 2005, vol. 01, http://en.cnki.com.cn/Article-en/CJFDTOTAL-JSCL200501014.htm

  39. Kurlov, A.S. and Rempel, A.A., Effect of cobalt powder morphology on the properties of WC-Co hard alloys, Intermetallic Mater., 2013, vol. 49, no. 9, pp. 956–960.

    Google Scholar 

  40. Xu, Y., Zhang, Y., Hao, S.Z., Parroud, O., Li, M.C., Wang, H.H., Grosdidier, T., and Dong, C., Surface microstructure and mechanical property of WC-6% Co hard alloy irradiated by high current pulsed electron beam, Appl. Surf.Sci., 2013, vol. 279, pp. 137–141.

    Article  CAS  Google Scholar 

  41. Engqvist, H., Jacobson, S., and Axen, N., A model for the hardness of cemented carbides, Wear, 2002, vol. 252, nos. 5–6, pp. 384–393.

    Article  CAS  Google Scholar 

  42. Lu, Sh.-P. and Kwon, O.-Y., Microstructure and bonding strength of WC reinforced Ni-base alloy brazed composite coating, Surf. Coat. Techn., 2002, vol. 153, no. 1, pp. 40–48.

    Article  CAS  Google Scholar 

  43. Fang, Zh.Z., Correlation of transverse rupture strength of WC-Co with hardness, Int. J. Refract. Met. Hard Mater., 2005, vol. 23, no. 2, pp. 119–127.

    Article  CAS  Google Scholar 

  44. Uglov, V.V., Anishchik, V.M., Astashynski, V.M., Cherenda, N.N., Gimro, I.G., Kovyazo, A. V., Modification of WC hard alloy by compressive plasma flow, Surf. Coat. Techn., 2005, vol. 200, nos. 1–4, pp. 245–249.

    Article  CAS  Google Scholar 

  45. Shon, I.-J., Jeong, I.-K., Ko, I.-Y., Doh, J.-M., and Woo, K.D., Sintering behavior and mechanical properties of WC-10Co, WC-10Ni and WC-10Fe hard materials produced by high-frequency induction heated sintering, Ceram. Int., 2009, vol. 35, no. 1, pp. 339–344.

    Article  CAS  Google Scholar 

  46. Lin, Ch., Kny, E., Yuan, G., and Djuricic, B., Microstructure and properties of ultrafine WC-0.6VC-10Co hardmetals densified by pressure-assisted critical liquid phase sintering, J. Alloys Comp., 2004, vol. 383, nos. 1–2, pp. 98–102.

    Article  CAS  Google Scholar 

  47. Shourong, L., Evaluating principle for hardness of WC-Co alloy by magnetism, Cemented Carbide, 2003, 02. http://en.cnki.com.cn/Article-en/CJFDTOTAL-YZHJ200302000.htm

    Google Scholar 

  48. Bao-qi, S., Study of strength and structure of WC-Co hard alloy (III), Rare Metals and Cemented Carbides, 2004, 03. http://en.cnki.com.cn/Article_en/CJFDTOTAL-XYJY200403012.htm

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Milman.

Additional information

Original Russian Text © Yu.V. Milman, 2014, published in Sverkhtverdye Materialy, 2014, Vol. 36, No. 2, pp. 3–23.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milman, Y.V. The effect of structural state and temperature on mechanical properties and deformation mechanisms of WC-Co hard alloy. J. Superhard Mater. 36, 65–81 (2014). https://doi.org/10.3103/S1063457614020014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457614020014

Keywords

Navigation