Skip to main content
Log in

Developments in synthesis, characterization, and application of large, high-quality CVD single crystal diamond

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

Single crystal diamond synthesis by microwave plasma chemical vapor deposition at rapid growth rate has considerably advanced in the past few years. Developments have been made in growth, optical quality, and mechanical properties. Of the various types of single crystal diamond that can be produced using these techniques, high quality single crystal CVD diamond can be routinely produced, and this material is playing an increasing role in research on materials under extreme conditions. This article highlights recent developments in single crystal CVD diamond synthesis and characterization, as well as various applications in high-pressure materials research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hall, H.T., The Synthesis of Diamond, J. Chem. Educ., 1961, vol. 38(10), pp. 484–488.

    Article  CAS  Google Scholar 

  2. Eversole, W.G., U.S. Patent 3030188, 1961.

  3. Jayaraman, A., Diamond Anvil Cell and High Pressure Physical Investigations, Rev. Modern Phys., 1983, vol. 55, pp. 65–108.

    Article  CAS  Google Scholar 

  4. Hemley, R.J., Percy W. Bridgman’s Second Century, High Press. Res., 2010, vol. 30, no. 4, 581–619.

    Article  CAS  Google Scholar 

  5. Yan, C.S., Vohra, Y.K., Mao, H.K., and Hemley R.J., Very High Growth Rate Chemical Vapor Deposition of Single Crystal Diamond, Proc. Nat. Acad. Sci., 2002, vol. 99, no. 20, pp. 12523–12525.

    Article  CAS  Google Scholar 

  6. Ho, S.S., Yan, C.S., Liu, Z., Mao, H.K., and Hemley, R.J., Prospects for Large Single Crystal CVD Diamonds, Indust. Diamond Rev., 2006, vol. 66, no. 10, pp. 28–32.

    Google Scholar 

  7. Liang, Q., Chin, C.Y., Lai, J., Yan, C.S., Meng, Y.F., Mao, H.K., and Hemley, R.J., Enhanced Growth of High Quality Single Crystal Diamond by MPCVD at High Gas Pressures, Appl. Phys. Lett., 2009, vol. 94, art. 024103.

  8. Chifre, J., Lopez, F., Morenza, J.L., and Esteve, J., Analysis of Contamination in Diamond Films by Secondary Ion Mass Spectroscopy, Diamond Relat. Mater., 1992, vol. 1, pp. 500–503.

    Article  Google Scholar 

  9. Gheeraert, E., Deneuville, A., Brunel, M., and Oberlin, J. C. Tungsten Incorporation in Diamond Thin Films Prepared by the Hot-Filament Technique, ibid., vol. 4,issue 5–6, pp. 504–507.

    Article  Google Scholar 

  10. Ohtake, N. and Yoshikawa, M., Diamond Film Preparation by Arc Discharge Plasma Jet Chemical Vapor Deposition in the Methane Atmosphere, J. Electrochem. Soc., 1990, vol. 137, no. 2, pp. 717–722.

    Article  CAS  Google Scholar 

  11. Ohtake, N., Kuriyama, Ya, Yoshikawa, M., Obana, H., Kito, M., and Saito, H., Development of an Arc-Discharge Plasma Apparatus for the High-Rate Synthesis of Diamond, Int. J. Japan Soc. Prec. Eng., 1991, vol. 25, no. 1, pp. 5–10.

    CAS  Google Scholar 

  12. Characterization of Plasma Process, Bachmann, P.K. and Lydtin, H., Eds., in Materials Research Society Symposium Proceedings, Warrendale: Materials Research Society, 1990.

  13. Field, J. The Properties of Natural and Synthetic Diamond, London: Academic, 1992.

    Google Scholar 

  14. Sussmann, R.S., Dialm, a New Diamond Material for Optics and Electronics, Indust. Diamond Rev., 1993, vol. 53, pp. 63–71.

    Google Scholar 

  15. Cao, G.Z., Schermer, J.J., van Enckevort, W.J.P., et al., Growth of {100} Textured Diamond Films by the Addition of Nitrogen, J. Appl. Phys., 1996, vol. 79, pp. 1357–1364.

    Article  CAS  Google Scholar 

  16. Jiang, X. and Jia, C.L., The Coalescence of [001] Diamond Grains Heteroepitaxially Grown on (001) Silicon, Appl. Phys. Lett., 1996, vol. 69, pp. 3902–3904.

    Article  CAS  Google Scholar 

  17. Gruen, D.M., Nanocrystalline Diamond Films, Ann. Rev. Mater. Sci., 1999, vol. 29, pp. 211–259.

    Article  CAS  Google Scholar 

  18. Spitsyn, B., Bouilov, L.L, and Deryagin, B.V., Vapor Growth of Diamond on Diamond and Other Surfaces, J. Cryst. Growth, 1981, vol. 52, pp. 219–226.

    Article  CAS  Google Scholar 

  19. Kamo, M., Sato, Y., Matsumoto, S., and Setaka, N., Diamond Synthesis from Gas Phase in Microwave Plasma, ibid., 1983, vol. 62, pp. 642–644.

    Article  CAS  Google Scholar 

  20. Afzal, A., Rego, C.A., Ahmed, W., and Cherry, R.I., HFCVD Diamond Grown with Added Nitrogen: Film Characterization and Gas-Phase Composition Studies, Diamond Relat. Mater., 1998, vol. 7, pp. 1033–1038.

    Article  CAS  Google Scholar 

  21. Handbook of Industrial Diamonds and Diamond Films, Prelas, M.A., Popovichi, G., and Bigelow, L.K., Eds., New York: Marcel Dekker, 1998.

    Google Scholar 

  22. Yan, C.S., Multiple Twinning and Nitrogen Defect Center in Chemical Vapor Deposited Homoepitaxial Diamond, Ph.D. Dissertation, Birmingham: University of Alabama, 1999.

    Google Scholar 

  23. Yan, C.S. and Vohra, Y.K., Multiple Twinning and Nitrogen Defect Center in Chemical Vapor Deposition Deposited Homoepitaxial Diamond, Diamond Relat. Mater., 1999, vol. 8, pp. 2022–2031.

    Article  CAS  Google Scholar 

  24. Tamor, M. and Everson, M.P., On the Role of Penetration Twins in the Morphological Development of Vapor-Grown Diamond Films, J. Mater. Res., 1994, vol. 9, pp. 1839–1847.

    Article  CAS  Google Scholar 

  25. Wild, C., Kohl, R., Herres, N., Müller-Sebert, W., and Koidl, P., Oriented CVD Diamond Films: Twin Formation, Structure and Morphology, Diamond Relat. Mater., 1994, vol. 3, pp. 373–381.

    Article  CAS  Google Scholar 

  26. Hemawan, K.W., Yan, C.S., Liang, Q., Lai, J., Meng, Y.F., Krasnicki, S., Mao, H.K., and Hemley, R.J. Hot Spot Formation in Microwave Plasma CVD Diamond Synthesis, IEEE Trans. Plasma Sci., 2011, vol. 39, pp. 2790–2791.

    Article  CAS  Google Scholar 

  27. Meng, Y.F., Yan, C.S., Mao H. K., and Hemley, R.J., Enhanced Optical Properties of Chemical Vapor Deposited Single Crystal Diamond by Low-Pressure High-Temperature Annealing, Proc. Nat. Acad. Sci., 2008, vol. 105, pp. 17620–17625.

    Article  CAS  Google Scholar 

  28. Liou, Y., Inspektor, A., Weimer, R., Knight, D., and Messier, R., The Effect of Oxygen in Diamond Deposition by Microwave Plasma Enhanced Chemical Vapour Deposition, J. Mater. Res., 1990, vol. 5, no. 11, pp. 2305–2312.

    Article  CAS  Google Scholar 

  29. Fuchs, F., Wild, C., Schwarz, K., Muller-Sebert, W., and Koidl, P., Hydrogen-Induced Vibrational and Electronic Transitions in Chemical Vapor Deposited Diamond, Identified by Isotopic Substitution, Appl. Phys. Lett., 1995, vol. 66, pp. 177–179.

    Article  CAS  Google Scholar 

  30. Tallaire, A., Achard, J., Silva, F., Sussmann, R.S., Gicquel, A., and Rzepka, E., Oxygen Plasma Pre-Treatments for High Quality Homoepitaxial CVD Diamond Deposition, Phys. Stat. Sol. A, 2004, vol. 241, no. 10, pp. 2419–2424.

    Article  Google Scholar 

  31. Martineau P.M., Lawson S.C., Lawson A.J., Quinn S.J., Evans J.F., and Crowder M.J., Identification of Synthetic Diamond Grown Using Chemical Vapor Deposition (CVD), Gems Gemol., 2004, vol. 40, pp. 2–25.

    Article  CAS  Google Scholar 

  32. Smith, C.P., Bosshart G., Ponahlo J. et al., GE POL Diamonds: Before and After, ibid., 2000, vol. 36, pp. 192–215.

    Article  Google Scholar 

  33. Weerdt, F.D. and Van Royen, J., Investigation of Seven Diamonds HPHT Treated by NovaDiamond, J. Gemm., 2000, vol. 7, pp. 201–208.

    Google Scholar 

  34. Shiryaev, A.A., Hutchison, M.T., Dembo, K.A., Dembo, A.T., Iakoubovskii, K., Klyuev, Yu.A., and Naletov A.M., High Temperature-High Pressure Annealing of Diamond Small Angle X-Ray Scattering and Optical Study, Physica B, 2001, vols.308–310, pp. 598–603.

    Article  Google Scholar 

  35. Collins, A.T., Connor, A., Ly, C.-H., Shareef, A., and Spear, P.M., High-Temperature Annealing of Optical Centers in Type I Diamond, J. Appl. Phys., 2005, vol. 97, no. 8, art. 083517.

    Google Scholar 

  36. Weerdt, F.D. and Collins, A.T., HPHT Annealing of Natural Diamond, New Diamond and Frontier Carbon Technolo-gy, 2007, vol. 17, no. 2, pp. 91–103.

    Google Scholar 

  37. Charles, S.J., Butler, J.E., Feygelson, B.N., Newton, M.E., Carroll, D.L., Steeds, J.W., Darwish, H., Yan, C.-S., Mao, H.K., and Hemley, R.J., Characterization of Nitrogen-Doped Chemical Vapor Deposited Single Crystal Diamond before and after High Pressure, High Temperature Annealing, Phys. Stat. Sol., 2004, vol. 242, pp. 2473–2485.

    Article  Google Scholar 

  38. Woods, G.S. and Collins, A.T., Infrared Absorption Spectra of Hydrogen Complexes in Type I Diamonds, J. Phys. Chem. Solids, 1983, vol. 44, pp. 471–475.

    Article  CAS  Google Scholar 

  39. Glover, C., Newton, M.E., Martineau, P., Twitchen, D.J., and Baker, J.M, Hydrogen Incorporation in Diamond: The Nitrogen-Vacancy-Hydrogen Complex, Phys. Rev. Lett., 2003, vol. 90, art. 185507.

  40. Novikov, N.V., Sirota, Yu.V., Mal’nev, V.I., and Petrusha, I.A., Mechanical Properties of Diamond and Cubic BN at Different Temperatures and Deformation Rates, Diamond Relat. Mater., 1993, vol. 2, pp. 1253–1256.

    Article  CAS  Google Scholar 

  41. Drory, M.D., Dauskardt, R.H., Kant, A., and Ritchie, R.O., Fracture of Synthetic Diamond, J. Appl. Phys., 1995, vol.78, pp. 3083–3088.

    Article  CAS  Google Scholar 

  42. Novikov, N.V. and Dub, S.N., Hardness and Fracture Toughness of CVD Diamond Film, Diamond Relat. Mater., 1996, vol. 5, pp. 1026–1030.

    Article  CAS  Google Scholar 

  43. Yan, C.S., Mao, H.K., Li, W., Qian, J., Zhao, Y., and Hemley, R.J., Ultrahard Single Crystal Diamond from Chemical Vapor Deposition, Phys. Stat.Sol.(a), 2004, vol. 201, pp. 25–27.

    Article  Google Scholar 

  44. Liang, Q., Yan, C.S., Meng, Y., Lai, J., Krasnicki, S., Mao, H.K., and Hemley, R.J., Recent Advances in High-Growth Rate Single-Crystal CVD Diamond, Diamond Relat. Mater., 2009, vol. 18, pp. 698–703.

    Article  CAS  Google Scholar 

  45. Liang, Q., Yan C.S., Meng, Y., Lai, J., Krasnicki, S., Mao, H.K., and Hemley R.J., Enhancing the Mechanical Properties of CVD Single Crystal Diamond, J. Phys. Condens. Matt., 2009, vol. 21, art. 364215.

  46. Novikov, N.V., Dub, S.N, and Mal’nev, V.I., High-Temperature Fracture Toughness of Monocrystalline Diamonds, J. Hard. Mater., 1993, vol. 4, pp. 19–27.

    CAS  Google Scholar 

  47. Patridge, G.P., May, P.W., Rega, C.A., and Ashfald, M.N.R., Potential for Diamond Fibres and Diamond Fibre Composites, Mat. Sci. Tech., 1994, vol. 10, pp. 505–512.

    Google Scholar 

  48. Locher, R., Wild, C., Herres, N., Behr, D., and Koidl, P., Nitrogen Stabilized 〈100〉 Texture in Chemical Vapor Deposited Diamond Films, Appl. Phys. Lett., 1994, vol. 65, pp. 34–36.

    Article  CAS  Google Scholar 

  49. Burns, R.C., Cvetkovic, V., Dodge, C.N., Evans, D.J.F., Rooney, M.-L.T., Spear, P.M., and Welbourn, C.M., Growth-Sector Dependence of Optical Features in Large Synthetic Diamonds, J. Cryst. Growth, 1990, vol. 104, pp. 257–279.

    Article  CAS  Google Scholar 

  50. Ramamurti, R., Becker, M., Schuelke, T., Grotjohn, T., Reinhard, D., Swain G., and Asmussen, J., Boron-Doped Diamond Deposited by Microwave Plasma-Assisted CVD at Low and High Pressures, Diamond Relat. Mater., 2008, vol. 17, pp. 481–485.

    Article  CAS  Google Scholar 

  51. Tsuno, T., Tomikawa, T., Shikata, S., Imai, T., and Fujimori, N., Diamond (001) Single-Domain 2×1 Surface Grown By Chemical Vapor Deposition, Appl. Phys. Lett., 1994, vol. 64, pp. 572–574.

    Article  CAS  Google Scholar 

  52. Anderson, G.C., Prawer, S., Johnston, P., and McCulloch, D., The Effect of Carbon and Nitrogen Implantation on the Abrasion Resistance of Type IIa (110) Diamond, Nucl. Instrum. Meth. Phys Res. B, 1993, vols. 80–81, pp. 1451–1455.

    Article  Google Scholar 

  53. Meng, Y. and Anthony, T.R., U.S. Patent 6322891, 2001.

  54. Anthony, T.R., Stresses Generated by Impurities in Diamond, Diamond Relat. Mater., 1995, vol. 4, pp. 1346–1352.

    Article  CAS  Google Scholar 

  55. Larson, B.C., Yang, W., Ice, G.E., Budai, J.D., and Tischler, J.Z., Three-Dimensional X-Ray Structural Microscopy with Submicrometer Resolution, Nature, 2002, vol. 415, no. 6874, pp. 887–890.

    Article  CAS  Google Scholar 

  56. Weir, C.E., Lippincott, E.R., Van Valkenburg, A., and Bunting, E.N., Infrared Studies in the 1-Micron to 15-Micron Region to 30,000 Atmospheres, J. Res. Nat. Bur. Stand. Sec. A: Phys. Chem., 1959, vol. 63.

  57. Hemley, R.J. and Ashfold, M.N., The Revealing Role of Pressure in the Condensed Matter Sciences, Phys. Today, 1998, vol. 51, pp. 26–32.

    Article  CAS  Google Scholar 

  58. Hemley, R.J., A Pressing Matter, Phys. World, 2006, vol. 19, pp. 26–30.

    CAS  Google Scholar 

  59. Goncharov, A.F., Hemley, R.J., Mao, H.K., and Shu, J., New High-Pressure Excitations in Parahydrogen, Phys. Rev. Lett., 1998, vol. 80, pp. 101–104.

    Article  CAS  Google Scholar 

  60. Merkel, S., Hemley, R.J., and Mao, H.K, Finite Element Modeling of Diamond Deformation at Multimegabar Pressures, Appl. Phys. Lett., 1999, vol. 74, no.5, pp. 656–658.

    Article  Google Scholar 

  61. Takano, K.J. and Wakatsuki, M., An Optical High-Pressure-Cell with Spherical Sapphire Anvils, Rev. of Sci. Instruments, 1991, vol. 62, pp. 1576–1580.

    Article  CAS  Google Scholar 

  62. Xu, J., Mao, H., Hemley, R.J., and Hines E., Large Volume High-Pressure Cell with Supported Moissanite Anvils, ibid., 2004, vol. 75, pp. 1034–1038.

    Article  CAS  Google Scholar 

  63. Mao, H.K. and Hemley, R.J., Ultrahigh-Pressure Transitions in Solid Hydrogen, Rev. Modern Phys., 1994, vol. 66, pp. 671–692.

    Article  CAS  Google Scholar 

  64. Dewaele, A., Loubeyre, P., Andre, R., and Hartwig, J., An X-ray Topographic Study of Diamond Anvils: Correlation between Defects and Helium Diffusion, J. Appl. Phys., 2006, vol. 99, art. 104906.

  65. Hemley, R.J., Mao, H.-K., Goncharov, A.F., Hanfland, M., and Struzkin, V., Synchrotron Infrared Spectroscopy to 0.15 eV of h-2 and d-2 at Megabar Pressures, Phys. Rev. Lett., 1996, vol. 76, pp. 1667–1670.

    Article  CAS  Google Scholar 

  66. Hemley, R.J. and Mao, H.K., Progress in Cryocrystals at Megabar Pressures, J. Low Temp. Phys., 2001, vol. 122, pp. 331–344.

    Article  CAS  Google Scholar 

  67. Gregoryanz, E., Goncharov, A.F., Matsuishi, K., Mao, H.K., and Hemley, R.J., Raman Spectroscopy of Hot Dense Hydrogen, Phys. Rev. Lett., 2003, vol. 90, art. 175701.

  68. Mills, R.L., Liebenberg, D.H., Bronson, J.C., and Schmidt, L.C., Procedure for Loading Diamond Cells with High-Pressure Gas, Rev. Sci. Instrum., 1980, vol. 51, pp. 891–895.

    Article  CAS  Google Scholar 

  69. Eremets, M.I., Megabar High-Pressure Cells for Raman Measurements, J. Raman Spectr., 2003, vol. 34, pp. 515–518.

    Article  CAS  Google Scholar 

  70. Sun, L., Ruoff, A.L., and Stupian, G., Convenient Optical Pressure Gauge for Multimegabar Pressures Calibrated to 300 GPa, Appl. Phys. Lett., 2005, vol. 86, art. 014103.

  71. Zha, C.S., Krasnicki, S., Meng, Y.F., Yan, C.S., Lai, J., Liang, Q., Mao, H.K., Hemley, R.J., Composite Chemical Vapor Deposition Diamond Anvils for High-Pressure/High-Temperature Experiments, High Pressure Research, 2009, vol. 29, no. 3, pp. 317–324.

    Article  CAS  Google Scholar 

  72. Wang, S., Meng, Y., Ando, N., Tate, M., Krasnicki, S., Yan, C., Liang, Q., Lai, J., Mao, H., Gruner, S.M., and Hemley, R.J., Single-Crystal CVD Diamonds as Small-Angle X-Ray Scattering Windows for High-Pressure Research, J. Appl. Crystallography, 2011, vol. 45, pp. 453–457.

    Article  Google Scholar 

  73. Ando, N., Chenevier, P., Novak, M., Tate, M.W., and Gruner, S.M., High Hydrostatic Pressure Small-Angle X-Ray Scattering Cell for Protein Solution Studies Featuring Diamond Windows and Disposable Sample Cells, ibid., 2008, vol. 41, pp. 167–175.

    Article  CAS  Google Scholar 

  74. Shiryaev, A. A., SANS from Defects in Diamond, ibid., 2007, vol. 40, pp. s116–s120.

    Article  CAS  Google Scholar 

  75. Shiryaev, A.A. and Boesecke, P., Small-Angle X-ray and Neutron Scattering from Diamond Single Crystals, http://arxiv.org/abs/1110.6270, 2011.

    Google Scholar 

  76. Gaukroger, M. P., Martineau, P.M., Crowder, M.J., Friel, I., Williams, S.D., and Twitchen, D.J., X-Ray Topography Studies of Dislocations in Single Crystal CVD Diamond, Diamond Relat. Mater., 2008, vol. 17, pp. 262–269.

    Article  CAS  Google Scholar 

  77. Popov, D., Personal Communication, 2012.

  78. Ando, N., Barstow, B., Baase, W., Fields, A., Brian, A., Matthews, W., and Gruner, S.M., Structural and Thermodynamic Characterization of T4 Lysozyme Mutants and the Contribution of Internal Cavities to Pressure Denaturation, Biochem., 2008, vol. 47, pp. 11097–11109.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Q. Liang, Y.-F. Meng, C.-S. Yan, S. Krasnicki, J. Lai, K. Hemawan, H. Shu, D. Popov, T. Yu, W. Yang, H.K. Mao, R.J. Hemley, 2013, published in Sverkhtverdye Materialy, 2013, Vol. 35, No. 4, pp. 3–25.

About this article

Cite this article

Liang, Q., Meng, Y.F., Yan, C.S. et al. Developments in synthesis, characterization, and application of large, high-quality CVD single crystal diamond. J. Superhard Mater. 35, 195–213 (2013). https://doi.org/10.3103/S1063457613040011

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457613040011

Keywords

Navigation