Skip to main content
Log in

Investigation of the Effect of a Single-Stranded Break on the Mechanical Parameters of DNA by Molecular Dynamics Method

  • RESEARCH ARTICLE
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

Early detection and repair of damaged DNA is important for cell functioning and survival. The recently proposed mechanism of intranucleosomal loop formation suggests the relaxation of DNA supercoiling accumulated during transcription through damaged chromatin. The degree of DNA relaxation is affected by the mechanical properties and structure of the double helix. In this work, the consequences from the introduction of a single-stranded break on the mechanical properties of a DNA fragment are studied using molecular dynamics. It is concluded that the introduction of a single-stranded break leads to decreased stiffness and higher elasticity of the damaged DNA molecule as compared to the intact one. This, in turn, may lead to relief in the supercoiling of the defective DNA and to the enzyme arrest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Klein, H.L., Bacinskaja, G., Che, J., et al., Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways, Microb. Cell., 2019, vol. 6, no. 1, pp. 1–64.

    Article  CAS  Google Scholar 

  2. Higo, T., Naito, A., Sumida, T., et al., DNA single-strand break-induced DNA damage response causes heart failure, Nat. Commun., 2017, vol. 8.

  3. Lindahl, T., Instability and decay of the primary structure of DNA, Nature, 1993, vol. 362, no. 6422, pp. 709–715.

    Article  CAS  Google Scholar 

  4. Kulaeva, O., Gaykalova, D., Pestov, N., Golovastov, V., Vassylyev, D., Artsimovitch, I., and Studitsky, V., Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II, Nat. Struct. Mol. Biol., 2009, vol. 16, no. 12, pp. 1272–1278.

    Article  CAS  Google Scholar 

  5. Gaykalova, D.A., Kulaeva, O.I., Volokh, O., Shaytan, A.K., Hsieh, F.K., Kirpichnikov, M.P., Sokolova, O.S., and Studitsky, V.M., Structural analysis of nucleosomal barrier to transcription, Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, no. 43, pp. E5787–E5795.

    Article  CAS  Google Scholar 

  6. Gerasimova, N.S., Pestov, N.A., Kulaeva, O.I., Nikitin, D.V., Kirpichnikov, M.P., and Studitsky, V.M., Repair of chromatinized DNA, Moscow Univ. Biol. Sci. Bull., 2015, vol. 70, no. 3, pp. 122–126.

    Article  Google Scholar 

  7. Pestov, N.A., Gerasimova, N.S., Kulaeva, O.I., and Studitsky, V.M., Structure of transcribed chromatin is a sensor of DNA damage, Sci. Adv., 2015, vol. 1, no. 6.

  8. van der Spoel, D., Lindahl, E., Hess, B., and the GROMACS Development Team, GROMACS User Manual Version 4.6.5, 2013.

  9. Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J.L., Dror, R.O., and Shaw, D.E., Improved side-chain torsion potentials for the amber ff99SB protein force field, Proteins, 2010, vol. 78, no. 8, pp. 1950–1958.

    Article  CAS  Google Scholar 

  10. Berendsen, H.J.C., Grigera, J.R., and Straatsma, T.P., The missing term in effective pair potentials, J. Phys. Chem., 1987, vol. 91, no. 24, pp. 6269–6271.

    Article  CAS  Google Scholar 

  11. Levitt, M., Hirshberg, M., Sharon, R., and Daggett, V., Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution, Comput. Phys. Commun., 1995, vol. 91, nos. 1–3, pp. 215–231.

    Article  CAS  Google Scholar 

  12. Darden, T.A. and Pedersen, L.G., Molecular modeling: An experimental tool, Environ. Health Perspect., 1993, vol. 101, no. 5P, pp. 410–412.

    Article  CAS  Google Scholar 

  13. Goddard, T.D., Huang, C.C., and Ferrin, T.E., Visualizing density maps with UCSF chimera, J. Struct. Biol., 2007, vol. 157, no. 1, pp. 281–287.

    Article  CAS  Google Scholar 

  14. Lu, X.-J., Shakked, Z., and Olson, W.K., A-form conformational motifs in ligand-bound DNA structures, J. Mol. Biol., 2000, vol. 300, no. 4, pp. 819–840.

    Article  CAS  Google Scholar 

  15. Colasanti, A.V., Lu, X.J., and Olson, W.K., Analyzing and building nucleic acid structures with 3DNA, J. Vis. Exp., 2013, no. 74.

  16. Lu, X.J. and Olson, W.K., 3DNA: A software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures, Nucleic Acids Res., 2003, vol. 31, no. 17, pp. 5108–5121.

    Article  CAS  Google Scholar 

  17. Volokh, O.I., Bozdaganyan, M.E., and Shaitan, K.V., Assessment of the DNA-binding properties of actinomycin and its derivatives by molecular dynamics simulation, Biophysics, 2015, vol. 60, no. 6, pp. 893–899.

    Article  CAS  Google Scholar 

  18. Kumar, R. and Grubmüller, H., do_x3dna: A tool to analyze structural fluctuations of dsDNA or dsRNA from molecular dynamics simulations, Bioinformatics, 2015, vol. 31, no. 15, pp. 2583–2585.

    Article  CAS  Google Scholar 

  19. Lankaš, F., Šponer, J., Langowski, J., and Cheatham, T.E., DNA basepair step deformability inferred from molecular dynamics simulations, Biophys. J., 2003, vol. 85, no. 5, pp. 2872–2883.

    Article  Google Scholar 

  20. Olson, W.K. and Zhurkin, V.B., Modeling DNA deformations, Curr. Opin. Struct. Biol., 2000, vol. 10, no. 3, pp. 286–297.

    Article  CAS  Google Scholar 

  21. Banáš, P., Mládek, A., Otyepka, M., Zgarbová, M., Jurečka, P., Svozil, D., Lankaš, F., and Šponer, J., Can we accurately describe the structure of adenine tracts in B-DNA? Reference quantum-chemical computations reveal overstabilization of stacking by molecular mechanics, J. Chem. Theory Comput., 2012, vol. 8, no. 7, pp. 2448–2460.

    Article  Google Scholar 

  22. Cocco, S., Marko, J.F., and Monasson, R., Theoretical models for single-molecule DNA and RNA experiments: From elasticity to unzipping, C. R. Phys., 2002, vol. 3, no. 5, pp. 569–584.

    Article  CAS  Google Scholar 

  23. Marko, J.F. and Cocco, S., The micromechanics of DNA, Phys. World, 2003, vol. 16, no. 3, pp. 37–41.

    Article  CAS  Google Scholar 

  24. Bloom, K.S., Beyond the code: The mechanical properties of DNA as they relate to mitosis, Chromosoma, 2008, vol. 117, no. 2, pp. 103–110.

    Article  Google Scholar 

  25. Sobell, H.M., Actinomycin and DNA transcription, Proc. Natl. Acad. Sci. U.S.A., 1985, vol. 82, no. 16, pp. 5328–5331.

    Article  CAS  Google Scholar 

  26. Liu, Y.F. and Ran, S.Y., Divalent metal ions and intermolecular interactions facilitate DNA network formation, Colloids Surf. B, 2020, vol. 194.

  27. Armeev, G.A., Shaitan, K.V., and Shaitan, A.K., Molecular dynamics study of the ionic environment and electrical characteristics of nucleosomes, Moscow Univ. Biol. Sci. Bull., 2015, vol. 70, no. 4, pp. 173–176.

    Article  Google Scholar 

  28. Moiseenko, A., Loiko, N., Tereshkina, K., Danilova, Y., Kovalenko, V., Chertkov, O., Feofanov, A.V., Krupyanskii, Yu.F., and Sokolova, O.S., Projection structures reveal the position of the DNA within DNA-Dps co-crystals, Biochem. Biophys. Res. Commun., 2019, vol. 517, no. 3, pp. 463–469.

    Article  CAS  Google Scholar 

  29. Jiang, Y., Zhang, H., Feng, W., and Tan, T., Refined dummy atom model of Mg2+ by simple parameter screening strategy with revised experimental solvation free energy, J. Chem. Inf. Model., 2015, vol. 55, no. 12, pp. 2575–2586.

    Article  CAS  Google Scholar 

  30. Bondarenko, V., Steele, L., Ujvari, A., Gaykalova, D., Kulaeva, O., Polikanov, Y., Luse, D., and Studitsky, V., Nucleosomes can form a polar barrier to transcript elongation by RNA polymerase II, Mol. Cell, 2006, vol. 24, no. 3, pp. 469–479.

    Article  CAS  Google Scholar 

  31. Hsieh, F.K., Fisher, M., Ujvari, A., Studitsky, V., and Luse, D., Histone Sin mutations promote nucleosome traversal and histone displacement by RNA polymerase II, EMBO Rep., 2010, vol. 11, no. 9, pp. 705–710.

    Article  CAS  Google Scholar 

  32. Kulaeva, O., Gaykalova, D., Pestov, N., Golovastov, V., Vassylyev, D., Artsimovitch, I., and Studitsky, V., Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II, Nat. Struct. Mol. Biol., 2009, vol. 16, no. 12, pp. 1272–1278.

    Article  CAS  Google Scholar 

  33. Sadovnichy, V., Tikhonravov, A., Voevodin, V., and Opanasenko, V., “Lomonosov”: Supercomputing at Moscow State University, in Contemporary High Performance Computing: From Petascale toward Exascale, Jeffery, S.V., Ed., Boca Raton: CRC Press, 2013, pp. 283–307.

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 19-74-30003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Sokolova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The studies were performed without the use of animals and without the involvement of human subjects.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Additional information

Translated by A. A. Lisenkova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volokh, O.I., Armeev, G.A., Trifonova, E.S. et al. Investigation of the Effect of a Single-Stranded Break on the Mechanical Parameters of DNA by Molecular Dynamics Method. Moscow Univ. Biol.Sci. Bull. 75, 136–141 (2020). https://doi.org/10.3103/S0096392520030098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392520030098

Keywords:

Navigation