Skip to main content
Log in

Genetic resources of chili pepper (Capsicum annuum L.) against Phytophthora capsici and their induction through various biotic and abiotic factors

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Phytophthora capsici is the most destructive pathogen of vegetables that has blown a serious threat to chili pepper plants. We discussed the control of Phytophthora capsici through manipulation of genetic architecture of chili plant. Various genes encoding transcriptional regulatory and defense related putative proteins such as pathogen-related protein (PR), Anti-Microbial peptides (AMPs), Polygalacturonase-inhibiting proteins (PGIPs), Lipid Transfer Protein (LTP), Pectin Methylesterase (PME), Leucine-rich repeat proteins (LRRs), Osmotin-like and Thaumatin-like protein, have been identified in Capsicum. We also discussed the enhanced resistance to P. capsici infection by treatment with a variety of abiotic and biotic inducers that act on defense signaling pathways involved in disease resistance. We highlighted the vulnerability of chili crop with reference to its genetic resources against Phytophthora blight. Disease control through chemicals is becoming problematic, so we proposed other ways to control the disease severity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tariq, M., Ali, Q., Khan, A., Khan, G.A., Rashid, B., Rahi, M.S., Ali, A., Nasir, I.A., and Husnain, T., Yield potential study of Capsicum annuum L. under the application of PGPR, Adv. Life Sci., 2014, vol. 1, no. 4, pp. 202–207.

    Google Scholar 

  2. Mueller, L.A., Solow, T.H., Taylor, N., Skwarecki, B., Buels, R., Binns, J., Lin, C., Wright, M.H., Ahrens, R., Wang, Y., Herbst, E.V., Keyder, E.R., Menda, N., Zamir, D., and Tanksley, S.D., The sol genomics network. a comparative resource for Solanaceae biology and beyond, Plant Physiol., 2005, vol. 138, no. 3, pp. 1310–1317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sanatombi, K., Sen-Mandi, S., and Sharma, G., DNA profiling of Capsicum landraces of Manipur, Sci. Hort., 2010, vol. 124, no. 3, pp. 405–408.

    Article  CAS  Google Scholar 

  4. Lee, K.J., Kamala-Kannan, S., Sub, H.S., Seong, C.K., and Lee, G.W., Biological control of Phytophthora blight in red pepper (Capsicum annuum L.) using Bacillus subtilis, World J. Microb. Biotech., 2008, vol. 24, no. 7, pp. 1139–1145.

    Article  CAS  Google Scholar 

  5. Matheron, M. and Porchas, M., Suppression of Phytophthora root and crown rot on pepper plants treated with acibenzolar-S-methyl, Plant Dis., 2002, vol. 86, no. 3, pp. 292–297.

    Article  CAS  Google Scholar 

  6. Parra, G. and Ristaino, J.B., Resistance to mefenoxam and metalaxyl among field isolates of Phytophthora capsici causing Phytophthora blight of bell pepper, Plant Dis., 2001, vol. 85, no. 10, pp. 1069–1075.

    Article  CAS  Google Scholar 

  7. Ramchiary, N., Kehie, M., Brahma, V., Kumaria, S., and Tandon, P., Application of genetics and genomics towards Capsicum translational research, Plant Biotech. Rep., 2014, vol. 8, no. 2, pp. 101–123.

    Article  Google Scholar 

  8. Pflieger, S., Palloix, A., Caranta, C., Blattes, A., and Lefebvre, V., Defense response genes co-localize with quantitative disease resistance loci in pepper, Theor. Appl. Genet., 2001, vol. 103, no. 6, pp. 920–929.

    Article  CAS  Google Scholar 

  9. Ali, A., Muzaffar, A., Awan, M.F., Din, S., Nasir, I.A., and Husnain, T., Genetically modified foods: engineered tomato with extra advantages, Adv. Life Sci., 2014, vol. 1, no. 3, pp. 139–152.

    Google Scholar 

  10. Feng, B., Li, P., Wang, H., and Zhang, X., Functional analysis of pcpme6 from oomycete plant pathogen Phytophthora capsici, Microb. Pathog., 2010, vol. 49, nos. 1–2, pp. 23–31.

    Article  CAS  PubMed  Google Scholar 

  11. Dang, F., Wang, Y., She, J., Lei, Y., Liu, Z., Eulgem, T., Lai, Y., Lin, J., Yu, L., Lei, D., Guan, D., Li, X., Yuan, Q., and He, S., Overexpression of CAWRKY27, a subgroup IIe WRKY transcription factor of Capsicum annuum, positively regulates tobacco resistance to Ralstonia solanacearum infection, Physiol. Planta, 2014, vol. 150, no. 3, pp. 397–411.

    Article  CAS  Google Scholar 

  12. Ortiz, R., de la Flor, D.F., Alvarado, G., and Crossa, J., Classifying vegetable genetic resources—a case study with domesticated Capsicum spp., Sci. Hort., 2010, vol. 126, no. 2, pp. 186–191.

    Article  Google Scholar 

  13. Wang, D. and Bosland, P.W., The genes of Capsicum, HortScience, 2006, vol. 41, no. 5, pp. 1169–1187.

    CAS  Google Scholar 

  14. Gurr, S.J. and Rushton, P.J., Engineering plants with increased disease resistance: what are we going to express?, Trends Biotech., 2005, vol. 23, no. 6, pp. 275–282.

    Article  CAS  Google Scholar 

  15. Ji, J.-J., Huang, W., Yin, Y.-X., Li, Z., and Gong, Z.-H., Development of a SCAR marker for early identification of S-cytoplasm based on mitochondrial SRAP analysis in pepper (Capsicum annuum L.), Mol. Breed., 2014, vol. 33, no. 3, pp. 679–690.

    Article  CAS  Google Scholar 

  16. Ali, A., Iftikhar, M.S., Majid, M.U., Akram, M.S., Munawar, T., Aleem, M., Ali, S., Azam, S., Bajwa, K.S., Samiullah, T.R., Nasir, I.A., and Husnain, T., Genes and transcriptional factors in chili plant with aspect to metabolism and resistance against virus, bacteria and fungi: a review, J. Agric. Sci. Tech. B, 2014, vol. 4, pp. 509–517.

    CAS  Google Scholar 

  17. Khaliluev, M. and Shpakovskii, G., Genetic engineering strategies for enhancing tomato resistance to fungal and bacterial pathogens, Russ. J. Plant Physiol., 2013, vol. 60, no. 6, pp. 721–732.

    Article  CAS  Google Scholar 

  18. Ko, M.K., Soh, H., Kim, K.-M., Kim, Y.S., and Im, K., Stable production of transgenic pepper plants mediated by Agrobacterium tumefaciens, HortScience, 2007, vol. 42, no. 6, pp. 1425–1430.

    CAS  Google Scholar 

  19. Wang, J.-E., Liu, K.-K., Li, D.-W., Zhang, Y.-L., Zhao, Q., He, Y.-M., and Gong, Z.-H., A novel peroxidase CanPOD gene of pepper is involved in defense responses to Phytophthora capsici infection as well as abiotic stress tolerance, Int. J. Mol. Sci., 2013, vol. 14, no. 2, pp. 3158–3177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu, W.-Y., Kang, J.-H., Jeong, H.-S., Choi, H.-J., Yang, H.-B., Kim, K.-T., Choi, D., Choi, G.J., Jahn, M., and Kang, B.-C., Combined use of bulked segregant analysis and microarrays reveals SNP markers pinpointing a major QTL for resistance to Phytophthora capsici in pepper, Theor. Appl. Genet., 2014, vol. 127, no. 11, pp. 2503–2513.

    Article  CAS  PubMed  Google Scholar 

  21. Rehrig, W.Z., Ashrafi, H., Hill, T., Prince, J., and Van Deynze, A., Cosegregates with QTL for resistance to in pepper, Plant Genome, 2014, vol. 7, no. 2.

    Google Scholar 

  22. Choi, H.W. and Hwang, B.K., Systemic acquired resistance of pepper to microbial pathogens, J. Phytopathol., 2011, vol. 159, no. 6, pp. 393–400.

    CAS  Google Scholar 

  23. Fernando, M.-S., Ligia, B.-A., Mayra, D.-B., and Ignacio, I.-F., A review of a promising therapeutic and agronomical alternative: antimicrobial peptides from Capsicum sp, Afr. J. Biotech., 2014, vol. 10, no. 86, pp. 19918–19928.

    Google Scholar 

  24. Castro Rocha, A., Fernández Pavía, S.P., and Osuna Ávila, P., Chili defense mechanisms in the Capsicum annuum–Phytophthora capsici pathosystem, Rev. Mex. Fitopatol., 2012, vol. 30, no. 1, pp. 49–65.

    Google Scholar 

  25. Sarowar, S., Kim, E.N., Kim, Y.J., Ok, S.H., Kim, K.D., Hwang, B.K., and Shin, J.S., Overexpression of a pepper ascorbate peroxidase-like 1 gene in tobacco plants enhances tolerance to oxidative stress and pathogens, Plant Sci., 2005, vol. 169, no. 1, pp. 55–63.

    Article  CAS  Google Scholar 

  26. Lee, S.C. and Hwang, B.K., CASAR82A, a pathogeninduced pepper SAR8.2, exhibits an antifungal activity and its overexpression enhances disease resistance and stress tolerance, Plant. Mol. Biol., 2006, vol. 61, nos. 1–2, pp. 95–109.

    Article  CAS  PubMed  Google Scholar 

  27. An, S.H., Sohn, K.H., Choi, H.W., Hwang, I.S., Lee, S.C., and Hwang, B.K., Pepper pectin methylesterase inhibitor protein capmei1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance, Planta, 2008, vol. 228, no. 1, pp. 61–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hong, J.K. and Hwang, B.K., Promoter activation of pepper class II basic chitinase gene, CAChi2, and enhanced bacterial disease resistance and osmotic stress tolerance in the CAChi2-overexpressing Arabidopsis, Planta, 2006, vol. 223, no. 3, pp. 433–448.

    Article  CAS  PubMed  Google Scholar 

  29. Sarowar, S., Kim, Y.J., Kim, E.N., Kim, K.D., Choi, J.Y., Hyung, N.I., and Shin, J.S., Constitutive expression of two pathogenesis-related genes in tomato plants enhanced resistance to oomycete pathogen Phytophthora capsici, Plant Cell, Tiss. Organ Cult, 2006, vol. 86, no. 1, pp. 7–14.

    Article  CAS  Google Scholar 

  30. Cho, K.C., Han, Y.J., Kim, S.J., Lee, S.S., Hwang, O.J., Song, P.S., Kim, Y.S., and Kim, J.I., Resistance to Rhizoctonia solani AG22 (IIIB) in creeping bentgrass plants transformed with pepper esterase gene PepEST, Plant Pathol., 2011, vol. 60, no. 4, pp. 631–639.

    Article  CAS  Google Scholar 

  31. Ko, M.K., Jeon, W.B., Kim, K.S., Lee, H.H., Seo, H.H., Kim, Y.S., and Oh, B.-J., A Colletotrichum gloeosporioides-induced esterase gene of nonclimacteric pepper (Capsicum annuum) fruit during ripening plays a role in resistance against fungal infection, Plant. Mol. Biol., 2005, vol. 58, no. 4, pp. 529–541.

    Article  CAS  PubMed  Google Scholar 

  32. Hong, J.K., Choi, D.S., Kim, S.H., Yi, S.Y., Kim, Y.J., and Hwang, B.K., Distinct roles of the pepper pathogen-induced membrane protein gene CaPIMP1 in bacterial disease resistance and oomycete disease susceptibility, Planta, 2008, vol. 228, no. 3, pp. 485–497.

    Article  CAS  PubMed  Google Scholar 

  33. Hong, J.K., Jung, H.W., Lee, B.K., Lee, S.C., Lee, Y.K., and Hwang, B.K., An osmotin-like protein gene, CAOSM1, from pepper: differential expression and in situ localization of its mRNA during pathogen infection and abiotic stress, Physiol. Mol. Plant Pathol., 2004, vol. 64, no. 6, pp. 301–310.

    Article  CAS  Google Scholar 

  34. Ribeiro, S.F., Silva, M.S., Da, CunhaM., Carvalho, A.O., Dias, G.B., Rabelo, G., Mello, É.O., Santa-Catarina, C., Rodrigues, R., and Gomes, V.M., Capsicum annuum L. trypsin inhibitor as a template scaffold for new drug development against pathogenic yeast, Antonie van Leeuwenhoek, 2012, vol. 101, no. 3, pp. 657–670.

    Article  CAS  PubMed  Google Scholar 

  35. Shin, R., Park, C.-J., An, J.-M., and Paek, K.-H., A novel TMV-induced hot pepper cell wall protein gene (catin2) is associated with virus-specific hypersensitive response pathway, Plant. Mol. Biol., 2003, vol. 51, no. 5, pp. 687–701.

    Article  CAS  PubMed  Google Scholar 

  36. de Souza, CândidoE., Pinto, M.F., Pelegrini, P.B., Lima, T.B., Silva, O.N., Pogue, R., Grossi-de-Sá, M.F., and Franco, O.L., Plant storage proteins with antimicrobial activity: novel insights into plant defense mechanisms, FASEB J., 2011, vol. 25, no. 10, pp. 3290–3305.

    Article  Google Scholar 

  37. Soh, H.C., Park, A.R., Park, S., Back, K., Yoon, J.B., Park, H.G., and Kim, Y.S., Comparative analysis of pathogenesis-related protein 10 (PR10) genes between fungal resistant and susceptible peppers, Eur. J. Plant Pathol., 2012, vol. 132, no. 1, pp. 37–48.

    Article  CAS  Google Scholar 

  38. Van der Ent, S., Van Wees, S., and Pieterse, C.M., Jasmonate signaling in plant interactions with resistanceinducing beneficial microbes, Phytochemistry, 2009, vol. 70, nos. 13–14, pp. 1581–1588.

    PubMed  Google Scholar 

  39. Silvar, C., Merino, F., and Díaz, J., Differential activation of defense-related genes in susceptible and resistant pepper cultivars infected with Phytophthora capsici, J. Plant Physiol., 2008, vol. 165, no. 10, pp. 1120–1124.

    Article  CAS  PubMed  Google Scholar 

  40. Hong, J.K., Lee, S.C., and Hwang, B.K., Activation of pepper basic PR-1 gene promoter during defense signaling to pathogen, abiotic and environmental stresses, Gene, 2005, vol. 356, pp. 169–180.

    Article  CAS  PubMed  Google Scholar 

  41. Silvar, C., Merino, F., and Diaz, J., Resistance in pepper plants induced by Fusarium oxysporum f. sp. lycopersici involves different defense-related genes, Plant Biol., 2009, vol. 11, no. 1, pp. 68–74.

    Article  CAS  PubMed  Google Scholar 

  42. Wang, X., Zhu, X., Tooley, P., and Zhang, X., Cloning and functional analysis of three genes encoding polygalacturonase-inhibiting proteins from Capsicum annuum and transgenic CaPGIP1 in tobacco in relation to increased resistance to two fungal pathogens, Plant. Mol. Biol., 2013, vol. 81, nos. 4–5, pp. 379–400.

    Article  CAS  PubMed  Google Scholar 

  43. Choi, H.W. and Hwang, B.K., The pepper extracellular peroxidase CAPO2 is required for salt, drought and oxidative stress tolerance as well as resistance to fungal pathogens, Planta, 2012, vol. 235, no. 6, pp. 1369–1382.

    Article  CAS  PubMed  Google Scholar 

  44. Zheng, H.Z., Cui, C.L., Zhang, Y.T., Wang, D., Jing, Y., and Kim, K.Y., Active changes of lignification-related enzymes in pepper response to Glomus intraradices and/or Phytophthora capsici, J. Zhejiang Univ. Sci. B, 2005, vol. 6, no. 8, pp. 778–786.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hong, J.K., Choi, H.W., Hwang, I.S., Kim, D.S., Kim, N.H., Choi, D.S., Kim, Y.J., and Hwang, B.K., Function of a novel GDSL-type pepper lipase gene, caglip1, in disease susceptibility and abiotic stress tolerance, Planta, 2008, vol. 227, no. 3, pp. 539–558.

    Article  CAS  PubMed  Google Scholar 

  46. Choi, H.W. and Hwang, B.K., Molecular and cellular control of cell death and defense signaling in pepper, Planta, 2015, vol. 24, no. 1, pp. 1–27.

    Article  Google Scholar 

  47. An, S.H., Choi, H.W., Hong, J.K., and Hwang, B.K., Regulation and function of the pepper pectin methylesterase inhibitor (CaPMEI1) gene promoter in defense and ethylene and methyl jasmonate signaling in plants, Planta, 2009, vol. 230, no. 6, pp. 1223–1237.

    Article  CAS  PubMed  Google Scholar 

  48. Jung, H.W. and Hwang, B.K., The leucine-rich repeat (LRR) protein, CALRR1, interacts with the hypersensitive induced reaction (HIR) protein, CaHIR1, and suppresses cell death induced by the cahir1 protein, Mol. Plant Pathol., 2007, vol. 8, no. 4, pp. 503–514.

    Article  CAS  PubMed  Google Scholar 

  49. García-Pineda, E., Castro-Mercado, E., and Lozoya-Gloria, E., Gene expression and enzyme activity of pepper (Capsicum annuum L.) ascorbate oxidase during elicitor and wounding stress, Plant Sci., 2004, vol. 166, no. 1, pp. 237–243.

    Article  Google Scholar 

  50. Lee, S.C. and Hwang, B.K., Induction of some defenserelated genes and oxidative burst is required for the establishment of systemic acquired resistance in Capsicum annuum, Planta, 2005, vol. 221, no. 6, pp. 790–800.

    Article  CAS  PubMed  Google Scholar 

  51. Hong, J.-P. and Kim, W.T., Isolation and functional characterization of the Ca-Dreblp1 gene encoding a dehydration-responsive element binding-factor-like protein 1 in hot pepper (Capsicum annuum L. cv. Pukang), Planta, 2004, vol. 220, no. 6, pp. 875–888.

    Article  PubMed  Google Scholar 

  52. Lee, S.C., Kim, D.S., Kim, N.H., and Hwang, B.K., Functional analysis of the promoter of the pepper pathogen-induced gene, CAPIP2, during bacterial infection and abiotic stresses, Plant Sci., 2007, vol. 172, no. 2, pp. 236–245.

    Article  CAS  Google Scholar 

  53. Do, H.M., Lee, S.C., Jung, H.W., Sohn, K.H., and Hwang, B.K., Differential expression and in situ localization of a pepper defensin (CADEF1) gene in response to pathogen infection, abiotic elicitors and environmental stresses in Capsicum annuum, Plant Sci., 2004, vol. 166, no. 5, pp. 1297–1305.

    Article  CAS  Google Scholar 

  54. Zhang, Y.-L., Jia, Q.-L., Li, D.-W., Wang, J.-E., Yin, Y.-X., and Gong, Z.-H., Characteristic of the pepper CaRGA2 gene in defense responses against Phytophthora capsici Leonian, Int. J. Mol. Sci., 2013, vol. 14, no. 5, pp. 8985–9004.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sang, M.K., Kim, J.-G., and Kim, K.D., Biocontrol activity and induction of systemic resistance in pepper by compost water extracts against Phytophthora capsici, Phytopathology, 2010, vol. 100, no. 8, pp. 774–783.

    Article  PubMed  Google Scholar 

  56. Lee, J.-H., Hong, J.-P., Oh, S.-K., Lee, S., Choi, D., and Kim, W., The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants, Plant. Mol. Biol., 2004, vol. 55, no. 1, pp. 61–81.

    Article  CAS  PubMed  Google Scholar 

  57. Kim, D.S., Kim, N.H., and Hwang, B.K., GLYCINERICH RNA-BINDING PROTEIN1 interacts with RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 and suppresses cell death and defense responses in pepper (Capsicum annuum), New Phytol., 2014, vol. 205, no. 2, pp. 786–800.

    Article  PubMed  Google Scholar 

  58. Jung, H.W. and Hwang, B.K., Pepper gene encoding a basic β-1,3-glucanase is differentially expressed in pepper tissues upon pathogen infection and ethephon or methyl jasmonate treatment, Plant Sci., 2000, vol. 159, no. 1, pp. 97–106.

    Article  CAS  PubMed  Google Scholar 

  59. Lee, S.C., Hong, J.K., Kim, Y.J., and Hwang, B.K., Pepper gene encoding thionin is differentially induced by pathogens, ethylene and methyl jasmonate, Physiol. Mol. Plant Pathol., 2000, vol. 56, no. 5, pp. 207–216.

    Article  CAS  Google Scholar 

  60. Oh, S.-K., Baek, K.-H., Seong, E.S., Joung, Y.H., Choi, G.-J., Park, J.M., Cho, H.S., Kim, E.A., Lee, S., and Choi, D., CaMsrB2, pepper methionine sulfoxide reductase B2, is a novel defense regulator against oxidative stress and pathogen attack, Plant Physiol., 2010, vol. 154, no. 1, pp. 245–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang, R., Fan, X., Cai, X., and Hu, F., The inhibitory mechanisms by mixtures of two endophytic bacterial strains isolated from Ginkgo biloba against pepper Phytophthora blight, Biol. Control, 2014, vol. 85, pp. 59–67.

    Article  Google Scholar 

  62. Jung, H.W., Lim, C.W., Lee, S.C., Choi, H.W., Hwang, C.H., and Hwang, B.K., Distinct roles of the pepper hypersensitive induced reaction protein gene CaHIR1 in disease and osmotic stress, as determined by comparative transcriptome and proteome analyses, Planta, 2008, vol. 227, no. 2, pp. 409–425.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, Y.L., Jia, Q.L., Li, D.W., Wang, J.E., Yin, Y.X., and Gong, Z.H., Characteristic of the pepper CaRGA2 gene in defense responses against Phytophthora capsici Leonian, Int. J. Mol. Sci., 2013, vol. 14, no. 5, pp. 8985–9004.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Gilardi, G., Baudino, M., Moizio, M., Pugliese, M., Garibaldi, A., and Gullino, M., Integrated management of Phytophthora capsici on bell pepper by combining grafting and compost treatment, Crop Protect., 2013, vol. 53, pp. 13–19.

    Article  Google Scholar 

  65. Sanogo, S. and Ji, P., Water management in relation to control of Phytophthora capsici in vegetable crops, Agric. Water Manag., 2013, vol. 129, pp. 113–119.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Umair Majid.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majid, M.U., Awan, M.F., Fatima, K. et al. Genetic resources of chili pepper (Capsicum annuum L.) against Phytophthora capsici and their induction through various biotic and abiotic factors. Cytol. Genet. 51, 296–304 (2017). https://doi.org/10.3103/S009545271704003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S009545271704003X

Keywords

Navigation