Preview

Клиническая медицина

Расширенный поиск

Роль витамина B12 в физиологии и при эндокринопатиях

https://doi.org/10.30629/0023-2149-2021-99-9-10-509-520

Аннотация

Витамин B12 (кобаламин) — это собирательное название для группы водорастворимых кобальтсодержащих биологически активных соединений, относящихся к группе корриноидов. Витамин B12 необходим для гемопоэза, формирования эпителиальной ткани, в качестве кофермента он участвует в метаболизме жирных кислот, углеводов, нуклеиновых кислот. Дефицит кобаламина ассоциируется с развитием анемии, полинейропатии и снижением когнитивных функций. Ввиду неспецифичности симптомов и возможным развитием тяжелых, в том числе потенциально необратимых осложнений, важно проводить своевременный скрининг среди пациентов из потенциальной группы риска. Среди эндокринопатий дефицит витамина B12 наиболее активно обсуждается у пациентов с сахарным диабетом, ожирением и аутоиммунным поражением щитовидной железы. В частности, у лиц, принимающих метформин, наблюдается снижение уровня витамина B12 и возможно развитие ассоциированной с дефицитом B12 полинейропатии, которую сложно дифференцировать с диабетической полинейропатией. У пациентов с аутоиммунными поражениями щитовидной железы часто наблюдаются и другие аутоиммунные заболевания, в частности атрофический гастрит и пернициозная анемия. Нарушения всасывания B12 могут стать причиной дефицита B12 даже при его адекватном потреблении, что, возможно, объясняет достаточно высокую распространенность дефицита этого витамина у пациентов с аутоиммунным поражением щитовидной железы. В настоящем обзоре литературы суммируются последние сведения о роли метаболизма витамина B12, потенциальных группах риска развития дефицита этого витамина среди распространенных эндокринных заболеваний, а также возможностях его возмещения высокодозными пероральными формами, в частности цианокобаламином 1 мг.

Об авторах

Н. В. Шульпекова
ФГБУ «Национальный медицинский исследовательский центр эндокринологии» Минздрава России
Россия

Шульпекова Надежда Владимировна — клинический ординатор 2-го года обучения

117292, Москва



Ж. Е. Белая
ФГБУ «Национальный медицинский исследовательский центр эндокринологии» Минздрава России
Россия

Белая Жанна Евгеньевна — д-р мед. наук, профессор кафедры эндокринологии института высшего и дополнительного образования

117292, Москва

 



Г. Р. Галстян
ФГБУ «Национальный медицинский исследовательский центр эндокринологии» Минздрава России
Россия

Галстян Гагик Радикович — д-р мед. наук, профессор, и.о. заместителя директора Института диабета, заведующий отделением диабетической стопы, главный научный сотрудник

117292, Москва



Список литературы

1. Ahmed M.A. Metformin and Vitamin B12 Defi ciency: Where Do We Stand? Journal of pharmacy & pharmaceutical sciences: a publication of the Canadian Society for Pharmaceutical Sciences, So ciete canadienne des sciences pharmaceutiques. 2016;19(3):382–398. DOI: 10.18433/J3PK7P

2. Sinclair L. Recognizing, treating and understanding pernicious anaemia. Journal of the Royal Society of Medicine. 2008;101(5):262. DOI: 10.1258/JRSM.2008.081006

3. Morris M.S. The role of B vitamins in preventing and treating cognitive impairment and decline. Advances in Nutrition. 2012;3(6):801. DOI: 10.3945/AN.112.002535

4. Obeid R. The metabolic burden of methyl donor defi ciency with focus on the betaine homocysteine methyltransferase pathway. Nutrients. 2013;5(9):3481–3495. DOI: 10.3390/NU5093481

5. Phillips D., Aponte A.M., French S.A., Chess D.J., Balaban R.S. Succinyl-CoA synthetase is a phosphate target for the activation of mitochondrial metabolism. Biochemistry. 2009;48(30):7140. DOI: 10.1021/BI900725C

6. Popova A.Yu., Tutelyan V.A., Nikityuk D.B. On the new (2021) Norms of physiological requirements in energy and nutrients of various groups of the population of the Russian Federation. Problems of Nutrition. 2021;90(4):6–19. DOI: 10.33029/0042-8833-2021-90-4-6-19

7. Herrmann W., Obeid R., Schorr H., Geisel J. The Usefulness of Holotranscobalamin in Predicting Vitamin B12 Status in Diff erent Clinical Settings. Current Drug Metabolism. 2005;6(1):47–53. DOI: 10.2174/1389200052997384

8. Allen L.H. How common is vitamin B-12 defi ciency? The American journal of clinical nutrition. 2009;89(2). DOI: 10.3945/AJCN.2008.26947A

9. Healton E.B., Savage D.G., Brust J.C., Garrett T.J., Lindenbaum J. Neurologic aspects of cobalamin defi ciency. Medicine. 1991;70(4):229–245. DOI: 10.1097/00005792-199107000-00001

10. Gröber U., Kisters K., Schmidt J. Neuroenhancement with Vitamin B12-Underestimated Neurological Signifi cance. Nutrients. 2013;5(12):5031–5045. DOI: 10.3390/NU5125031

11. Saperstein D.S., Barohn R.J. Peripheral Neuropathy Due to Cobalamin Defi ciency. Current treatment options in neurology. 2002;4(3):197–201. DOI: 10.1007/S11940-002-0036-Y

12. Kamchatnov P.R., Damulin I.V. Cognitive impairments in vitamin B12 and folic acid defi ciencies and hyperhomocysteinemia. The Clinician. 2015;9(1):18. DOI: 10.17650/1818-8338-2015-1-18-23

13. Pawlak R. Vitamin B12 for Diabetes Patients Treated with Metformin. Journal of Family Medicine and Disease Prevention. 2017;3(2). DOI: 10.23937/2469-5793/1510057

14. Yajnik C.S., Deshpande S.S., Jackson A.A., Refsum H., Rao S., Fisher D.J., Bhat D.S., Naik S.S., Coyaji K.J., Joglekar C.V. et al. Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the off spring: the Pune Maternal Nutrition Study. Diabetologia. 2008;51(1):29–38. DOI: 10.1007/S00125-007-0793-Y

15. Stewart C.P., Christian P., Schulze K.J., Arguello M., LeClerq S.C., Khatry S.K., West K.P. Low maternal vitamin B-12 status is associated with off spring insulin resistance regardless of antenatal micronutrient supplementation in rural Nepal. The Journal of nutrition. 2011;141(10):1912–1917. DOI: 10.3945/JN.111.144717

16. Bhargava S.K., Sachdev H.S., Fall C.H., Osmond C., Lakshmy R., Barker D.J., Biswas S.K., Ramji S., Prabhakaran D., Reddy KS. Relation of serial changes in childhood body-mass index to impaired glucose tolerance in young adulthood. The New England journal of medicine. 2004;350(9):865–875. DOI: 10.1056/NEJMOA035698

17. Boachie J., Adaikalakoteswari A., Samavat J., Saravanan P. Low Vitamin B12 and Lipid Metabolism: Evidence from Pre-Clinical and Clinical Studies. Nutrients. 2020;12(7):1–20. DOI: 10.3390/NU12071925

18. Iacobazzi V., Castegna A., Infantino V., Andria G. Mitochondrial DNA methylation as a next-generation biomarker and diagnostic tool. Molecular genetics and metabolism. 2013;110(1–2):25–34. DOI: 10.1016/J.YMGME.2013.07.012

19. Adaikalakoteswari A., Finer S., Voyias P.D., Mccarthy C.M., Vatish M., Moore J., Smart-Halajko M., Bawazeer N., Al-Dagh ri N.M., Mcternan P.G., Kumar S., Hitman G.A., Saravanan P., Tripathi G. Vitamin B12 insuffi ciency induces cholesterol biosynthesis by limiting s-adenosylmethionine and modulating the methylation of SREBF1 and LDLR genes. Clinical Epigenetics. 2015;7(1). DOI: 10.1186/S13148-015-0046-8

20. Cordero P., Campion J., Milagro F.I., Martinez J.A. Transcriptomic and epigenetic changes in early liver steatosis associated to obesity: eff ect of dietary methyl donor supplementation. Molecular genetics and metabolism. 2013;110(3):388–395. DOI: 10.1016/J.YMGME.2013.08.022

21. Nilsson E., Matte A., Perfi lyev A., de Mello V.D., Käkelä P., Pihlajamäki J., Ling C. Epigenetic Alterations in Human Liver From Subjects With Type 2 Diabetes in Parallel With Reduced Folate Levels. The Journal of clinical endocrinology and metabolism. 2015;100(11):E1491–E1501. DOI: 10.1210/JC.2015-3204

22. Adaikalakoteswari A., Vatish M., Alam M.T., Ott S., Kumar S., Saravanan P. Low Vitamin B12 in Pregnancy Is Associated With Adipose-Derived Circulating miRs Targeting PPARγ and Insulin Resistance. The Journal of clinical endocrinology and metabolism. 2017;102(11):4200–4209. DOI: 10.1210/JC.2017-01155

23. Cheung O., Puri P., Eicken C., Contos M.J., Mirshahi F., Maher J.W., Kellum J.M., Min H., Luketic V.A., Sanyal A.J. Nonalcoholic steatohepatitis is associated with altered hepatic micro RNA ex pression. Hepatology (Baltimore, Md). 2008;48(6):1810. DOI: 10.1002/HEP.22569

24. Okamura M., Inagaki T., Tanaka T., Sakai J. Role of histone methylation and demethylation in adipogenesis and obesity. Organogenesis. 2010;6(1):24. DOI: 10.4161/ORG.6.1.11121

25. Lee J.H., Friso S., Choi S.W. Epigenetic Mechanisms Underlying the Link between Non-Alcoholic Fatty Liver Diseases and Nutrition. Nutrients. 2014;6(8):3303. DOI: 10.3390/NU6083303

26. Choi S.W., Friso S. Epigenetics: A New Bridge between Nutrition and Health. Advances in nutrition (Bethesda, Md). 2010;1(1):8–16. DOI: 10.3945/AN.110.1004

27. Ghosh S., Sinha J.K., Khandelwal N., Chakravarty S., Kumar A., Raghunath M. Increased stress and altered expression of histone modifying enzymes in brain are associated with aberrant behaviour in vitamin B12 defi cient female mice. Nutritional neuroscience. 2020;23(9):714–723. DOI: 10.1080/1028415X.2018.1548676

28. Garcia B.A., Luka Z., Loukachevitch L.V., Bhanu N.V., Wagner C. Folate defi ciency aff ects histone methylation. Medical hypotheses. 2016;88:63–67. DOI: 10.1016/J.MEHY.2015.12.027

29. Mehedint M.G., Niculescu M.D., Craciunescu C.N., Zeisel S.H. Choline defi ciency alters global histone methylation and epigenetic marking at the Re1 site of the calbindin 1 gene. FASEB journal: offi cial publication of the Federation of American Societies for Experimental Biology. 2010;24(1):184–195. DOI: 10.1096/FJ.09-140145

30. Rush E.C., Katre P., Yajnik C.S. Vitamin B12: one carbon metabolism, fetal growth and programming for chronic disease. European journal of clinical nutrition. 2014;68(1):2–7. DOI: 10.1038/EJCN.2013.232

31. Wolff enbuttel B.H.R., Heiner-Fokkema M.R., Green R., Gans R.O.B. Relationship between serum B12 concentrations and mortality: experience in NHANES. BMC medicine. 2020;18(1). DOI: 10.1186/S12916-020-01771-Y

32. Mendonça N., Jagger C., Granic A., Martin-Ruiz C., Mathers J.C., Seal C.J., Hill T.R. Elevated Total Homocysteine in All Participants and Plasma Vitamin B12 Concentrations in Women Are Associated With All-Cause and Cardiovascular Mortality in the Very Old: The Newcastle 85+ Study. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2018;73(9):1258. DOI: 10.1093/GERONA/GLY035

33. Tucker K.L., Hannan M.T., Qiao N., Jacques P.F., Selhub J., Cupples L.A., Kiel D.P. Low plasma vitamin B12 is associated with lower BMD: the Framingham Osteoporosis Study. Journal of Bone and Mineral Research:The Offi cial Journal of the American Society for Bone and Mineral Research. 2005;20(1):152–158. DOI: 10.1359/JBMR.041018

34. Li J., Zhang H., Shi M., Yan L., Xie M. Homocysteine is linked to macular edema in type 2 diabetes. Current eye research. 2014;39(7):730–735. DOI: 10.3109/02713683.2013.877933

35. Xu C., Wu Y., Liu G., Liu X., Wang F., Yu J. Relationship between homocysteine level and diabetic retinopathy: a systematic review and meta-analysis. Diagnostic Pathology. 2014;9:167. DOI: 10.1186/S13000-014-0167-Y

36. Stabler S.P. Clinical practice. Vitamin B12 defi ciency. The New England journal of medicine. 2013;368(2):149–160. DOI: 10.1056/NEJMCP1113996

37. Albert M.J., Mathan V.I., Baker S.J. Vitamin B12 synthesis by human small intestinal bacteria. Nature. 1980;283(5749):781–782. DOI: 10.1038/283781A0

38. Institute of Medicine (US) Standing Committee on the Scientifi c Evaluation of Dietary Reference Intakes and its Panel on Folate OBV and C. Dietary Reference Intakes for Thiamin, Ribofl avin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Dietary Reference Intakes for Thiamin, Ribofl avin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Published online June 15, 1998. DOI: 10.17226/6015

39. Watanabe F., Takenaka S., Katsura H., Masumder S.A., Abe K., Tamura Y., Nakano Y. Dried green and purple lavers (Nori) contain substantial amounts of biologically active vitamin B(12) but less of dietary iodine relative to other edible seaweeds. Journal of agricultural and food chemistry. 1999;47(6):2341–2343. DOI: 10.1021/JF981065C

40. Croft M.T., Lawrence A.D., Raux-Deery E., Warren M.J., Smith A.G. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature. 2005;438(7064):90–93. DOI: 10.1038/NATURE04056

41. Shah N., Prajapati J.B. Eff ect of carbon dioxide on sensory attributes, physico-chemical parameters and viability of Probiotic L. helveticus MTCC 5463 in fermented milk. Journal of Food Science and Technology. 2014;51(12):3886–3893. DOI: 10.1007/S13197-013-0943-9

42. Watanabe F., Yabuta Y., Bito T., Teng F. Vitamin B12-Containing Plant Food Sources for Vegetarians. Nutrients. 2014;6(5):1861. DOI: 10.3390/NU6051861

43. Patel A., Shah N., Prajapati J.B. Biosynthesis of vitamins and enzymes in fermented foods by lactic acid bacteria and related genera — A promising approach. Croatian journal of food science and technology. 2013;5(2):85–91.

44. Masuda M., Ide M., Utsumi H., Niiro T., Shimamura Y., Murata M. Production potency of folate, vitamin B(12), and thiamine by lactic acid bacteria isolated from Japanese pickles. Bioscience, biotechnology, and biochemistry. 2012;76(11):2061–2067. DOI: 10.1271/BBB.120414

45. Babuchowski A., Laniewska-Moroz L., Warminska-Radyko I. Propionibacteria in fermented vegetables. Le Lait. 1999;79(1):113–124. DOI: 10.1051/LAIT:199919

46. Bauman W.A., Shaw S., Jayatilleke E., Spungen A.M., Herbert V. Increased intake of calcium reverses vitamin B12 malabsorption induced by metformin. Diabetes care. 2000;23(9):1227–1231. DOI: 10.2337/DIACARE.23.9.1227

47. Schjønsby H. Vitamin B12 absorption and malabsorption. Gut. 1989;30(12):1686. DOI: 10.1136/GUT.30.12.1686

48. McMahon G.M., Hwang S.-J., Tanner R.M., Jacques P.F., Selhub J., Muntner P., Fox C.S. The association between vitamin B12, albuminuria and reduced kidney function: an observational cohort study. BMC Nephrology. 2015;16(1). DOI: 10.1186/1471-2369-16-7

49. Obeid R., Kuhlmann M., Kirsch C.M., Herrmann W. Cellular uptake of vitamin B12 in patients with chronic renal failure. Nephron Clinical practice. 2005;99(2). DOI: 10.1159/000083132

50. Sun A., Ni Y., Li X., Zhuang X., Liu Y., Liu X., Chen S. Urinary Methylmalonic Acid as an Indicator of Early Vitamin B12 Defi ciency and Its Role in Polyneuropathy in Type 2 Diabetes. Journal of Diabetes Research. 2014;(11):921616. DOI: 10.1155/2014/921616

51. Fedosov S.N. Metabolic signs of vitamin B(12) defi ciency in humans: computational model and its implications for diagnostics. Metabolism: clinical and experimental. 2010;59(8):1124–1138. DOI: 10.1016/J.METABOL.2009.09.036

52. Savage D.G., Lindenbaum J., Stabler S.P., Allen R.H. Sensitivity of serum methylmalonic acid and total homocysteine determinations for diagnosing cobalamin and folate defi ciencies. The American Journal of Medicine. 1994;96(3):239–246. DOI: 10.1016/0002-9343(94)90149-X

53. Carmel R. Biomarkers of cobalamin (vitamin B-12) status in the epidemiologic setting: a critical overview of context, applications, and performance characteristics of cobalamin, methylmalonic acid, and holotranscobalamin II. The American journal of clinical nutrition. 2011;94(1). DOI: 10.3945/AJCN.111.013441

54. de Benoist B. Conclusions of a WHO Technical Consultation on folate and vitamin B12 defi ciencies. Food and nutrition bulletin. 2008;29(2). DOI: 10.1177/15648265080292S129

55. Jarquin Campos A., Risch L., Nydegger U., Wiesner J., Vazquez Van Dyck M., Renz H., Stanga Z., Risch M. Diagnostic Accuracy of Holotranscobalamin, Vitamin B12, Methylmalonic Acid, and Homocysteine in Detecting B12 Defi ciency in a Large, Mixed Patient Population. Disease Markers. 2020;2020. DOI: 10.1155/2020/7468506

56. Weetman A.P. Autoimmune thyroid disease. Autoimmunity. 2004;37(4):337–340. DOI: 10.1080/08916930410001705394

57. Jaya Kumari S., Bantwal G., Devanath A., Aiyyar V., Patil M. Evaluation of serum vitamin B12 levels and its correlation with anti-thyroperoxidase antibody in patients with autoimmune thyroid disorders. Indian Journal of Clinical Biochemistry: IJCB. 2015;30(2):217–220. DOI: 10.1007/S12291-014-0418-4

58. Iddah M.A., Macharia B.N. Autoimmune Thyroid Disorders. ISRN Endocrinology. 2013;2013:1–9. DOI: 10.1155/2013/509764

59. Collins A.B., Pawlak R. Prevalence of vitamin B-12 defi ciency among patients with thyroid dysfunction. Asia pacifi c journal of clinical nutrition. 2016;25(2):221–226. DOI: 10.6133/APJCN.2016.25.2.22

60. Wiebe N., Field C.J., Tonelli M. A systematic review of the vitamin B12, folate and homocysteine triad across body mass index. Obesity reviews: an offi cial journal of the International Association for the Study of Obesity. 2018;19(11):1608–1618. DOI: 10.1111/OBR.12724

61. Sukumar N., Venkataraman H., Wilson S., Goljan I., Selvamoni S., Patel V., Saravanan P. Vitamin B12 Status among Pregnant Women in the UK and Its Association with Obesity and Gestational Diabetes. Nutrients. 2016;8(12). DOI: 10.3390/NU8120768.

62. Kaya C., Cengiz S.D., Satiroğlu H. Obesity and insulin resistance associated with lower plasma vitamin B12 in PCOS. Reproductive biomedicine online. 2009;19(5):721–726. DOI: 10.1016/J.RBMO.2009.06.005

63. Dror D.K., Allen L.H. Eff ect of vitamin B12 defi ciency on neurodevelopment in infants: Current knowledge and possible mechanisms. Nutrition Reviews. 2008;66(5):250–255. DOI: 10.1111/J.1753-4887.2008.00031.X

64. Ahmad S., Kumar K.A., Basak T., Bhardwaj G., Yadav D.K., Lalitha A., Chandak G.R., Raghunath M., Sengupta S. PPAR signaling pathway is a key modulator of liver proteome in pups born to vitamin B(12) defi cient rats. Journal of proteomics. 2013;91:297–308. DOI: 10.1016/J.JPROT.2013.07.027

65. Kumar K.A., Lalitha A., Pavithra D., Padmavathi I.J., Ganeshan M., Rao K.R., Venu L., Balakrishna N., Shanker N.H., Reddy S.U., Chandak G.R., Sengupta S., Raghunath M. Maternal dietary folate and/or vitamin B12 restrictions alter body composition (adiposity) and lipid metabolism in Wistar rat off spring. The Journal of nutritional biochemistry. 2013;24(1):25–31. DOI: 10.1016/J.JNUTBIO.2012.01.004

66. Ghosh S., Sinha L.K., Muralikrishna B., Putcha U.K., Raghunath M. Chronic transgenerational vitamin B12 defi ciency of severe and moderate magnitudes modulates adiposity-probable underlying mechanisms. BioFactors (Oxford, England). 2017;43(3):400–414. DOI: 10.1002/BIOF.1350

67. Al-Quaydheb A.N., Ofaysan M., al Rasheed A. Relation Between Vitamin B12 And Non-alcoholic Fatty Liver Disease: A Hospital Based Study. International Journal of Advanced Research. 2015;3:1335–1343. Accessed September 21, 2021. https://www.journalijar.com/article/5177/relation-between-vitamin-B12-and-non-alcoholic-fatty-liver-disease:-a-hospital-based-study/

68. Dedov I.I., Shestakova M.V., Vikulova O.K., Zheleznyakova A.V., Isakov M.A. Diabetes mellitus in the Russian Federation: prevalence, morbidity, mortality, parameters of carbohydrate metabolism and the structure of glucose-lowering therapy according to the Federal Register of Diabetes Mellitus, status 2017. Diabetes mellitus. 2018;21(3):144–159. DOI: 10.14341/DM9686

69. Tan M.H., Alquraini H., Mizokami-Stout K., MacEachern M. Metformin: From Research to Clinical Practice. Endocrinology and metabolism clinics of North America. 2016;45(4):819–843. DOI: 10.1016/J.ECL.2016.06.008

70. Alvarez M., Sierra O.R., Saavedra G., Moreno S. Vitamin B12 defi ciency and diabetic neuropathy in patients taking metformin: a cross-sectional study. Endocrine connections. 2019;8(10):1324–1329. DOI: 10.1530/EC-19-0382

71. Calvo Romero J.M., Ramiro Lozano J.M. Vitamin B12 in type 2 diabetic patients treated with metformin. Endocrinología y Nutrición (English Edition). 2012;59(8):487–490. DOI: 10.1016/J.ENDOEN.2012.06.005

72. Niafar M., Hai F., Porhomayon J., Nader N.D. The role of metformin on vitamin B12 defi ciency: a meta-analysis review. Internal and emergency medicine. 2015;10(1):93–102. DOI: 10.1007/S11739-014-1157-5

73. Chapman L.E., Darling A.L., Brown J.E. Association between metformin and vitamin B 12 defi ciency in patients with type 2 diabetes: A systematic review and meta-analysis. Diabetes & metabolism. 2016;42(5):316–327. DOI: 10.1016/J.DIABET.2016.03.008

74. Yang W., Cai X., Wu H., Ji L. Associations between metformin use and vitamin B12 levels, anemia, and neuropathy in patients with diabetes: a meta-analysis. Journal of diabetes. 2019;11(9):729–743. DOI: 10.1111/1753-0407.12900

75. de Jager J., Kooy A., Lehert P., Wulff elé M.G., van der Kolk J., Bets D., Verburg J., Donker A.J., Stehouwer C.D. Long term treatment with metformin in patients with type 2 diabetes and risk of vitamin B-12 defi ciency: randomised placebo controlled trial. BMJ (Clinical research ed). 2010;340(7757):1177. DOI: 10.1136/BMJ.C2181

76. Aroda V.R., Edelstein S.L., Goldberg R.B., Knowler W.C., Marcovina S.M., Orchard T.J., Bray G.A., Schade D.S., Temprosa M.G., White N.H., Crandall J.P. Long-term Metformin Use and Vitamin B12 Defi ciency in the Diabetes Prevention Program Outcomes Study. The Journal of clinical endocrinology and metabolism. 2016;101(4):1754–1761. DOI: 10.1210/JC.2015-3754

77. Serra M.C., Kancherla V., Khakharia A., Allen L.L., Phillips L.S., Rhee M.K., Wilson P.W.F., Vaughan C.P. Long-term metformin treatment and risk of peripheral neuropathy in older Veterans. Diabetes research and clinical practice. 2020;170. DOI: 10.1016/J.DIABRES.2020.108486

78. Gupta K., Jain A., Rohatgi A. An observational study of vitamin B12 levels and peripheral neuropathy profi le in patients of diabetes mellitus on metformin therapy. Diabetes & metabolic syndrome. 2018;12(1):51–58. DOI: 10.1016/J.DSX.2017.08.014

79. Bauman W.A., Shaw S., Jayatilleke E., Spungen A.M., Herbert V. Increased intake of calcium reverses vitamin B12 malabsorption induced by metformin. Diabetes care. 2000;23(9):1227–1231. DOI: 10.2337/DIACARE.23.9.1227

80. Caspary W.F., Creutzfeldt W. Analysis of the inhibitory eff ect of biguanides on glucose absorption: Inhibition of active sugar transport. Diabetologia. 1971;7(5):379–385. DOI: 10.1007/BF01219474

81. Schäfer G. Some new aspects on the interaction of hypoglycemia-producing biguanides with biological membranes. Biochemical pharmacology. 1976;25(18):2015–2024. DOI: 10.1016/0006-2952(76)90424-X

82. Owen M.D., Baker B.C., Scott E.M., Forbes K. Interaction between Metformin, Folate and Vitamin B 12 and the Potential Impact on Fetal Growth and Long-Term Metabolic Health in Diabetic Pregnancies. International journal of molecular sciences. 2021;22(11). DOI: 10.3390/IJMS22115759

83. Ziegler D., Papanas N., Vinik A.I., Shaw J.E. Epidemiology of polyneuropathy in diabetes and prediabetes. Handbook of clinical neurology. 2014;126:3–22. DOI: 10.1016/B978-0-444-53480-4.00001-1

84. Moore E.M., Mander A.G., Ames D., Kotowicz M.A., Carne R.P., Brodaty H., Woodward M., Boundy K., Ellis K.A., Bush A.I., Faux N.G., Martins R., Szoeke C., Rowe C., Watters D.A. Increased risk of cognitive impairment in patients with diabetes is associated with metformin. Diabetes care. 2013;36(10):2981–2987. DOI: 10.2337/DC13-0229

85. Shandal V., Luo J.J. Clinical Manifestations of Isolated Elevated Homocysteine-Induced Peripheral Neuropathy in Adults. Journal of clinical neuromuscular disease. 2016;17(3):106–109. DOI: 10.1097/CND.0000000000000108

86. Kim J., Ahn C.W., Fang S., Lee H.S., Park J.S. Association between metformin dose and vitamin B12 defi ciency in patients with type 2 diabetes. Medicine. 2019;98(46):e17918. DOI: 10.1097/MD.0000000000017918

87. Hashem M.M., Esmael A., Nassar A.K., El-Sherif M. The relationship between exacerbated diabetic peripheral neuropathy and metformin treatment in type 2 diabetes mellitus. Scientifi c Reports. 2021;11(1):1–9. DOI: 10.1038/s41598-021-81631-8

88. Wile D.J., Toth C. Association of Metformin, Elevated Homocysteine, and Methylmalonic Acid Levels and Clinically Worsened Diabetic Peripheral Neuropathy. Diabetes Care. 2010;33(1):156. DOI: 10.2337/DC09-0606

89. Out M., Kooy A., Lehert P., Schalkwijk C.A., Stehouwer C.D.A. Long-term treatment with metformin in type 2 diabetes and methylmalonic acid: Post hoc analysis of a randomized controlled 4.3year trial. Journal of diabetes and its complications. 2018;32(2):171–178. DOI: 10.1016/J.JDIACOMP.2017.11.001

90. Lamson Davis W. Metformin and Diabetic Neuropathy: Think B12. Natural Medicine Journal. 2020;12(6). Accessed September 20, 2021. https://www.naturalmedicinejournal.com/journal/2020-06/metformin-and-diabetic-neuropathy-think-B12.

91. Grisold A., Callaghan B.C., Feldman E.L. Mediators of diabetic neuropathy — is hyperglycemia the only culprit? Current opinion in endocrinology, diabetes, and obesity. 2017;24(2):103. DOI: 10.1097/MED.0000000000000320

92. Obeid R., Fedosov S.N., Nexo E. Cobalamin coenzyme forms are not likely to be superior to cyano- and hydroxyl-cobalamin in prevention or treatment of cobalamin defi ciency. Molecular Nutrition & Food Research. 2015;59(7):1364–72. DOI: 10.1002/mnfr.201500019

93. Vidal-Alaball J., Butler C.C., Cannings-John R., Goringe A., Hood K., McCaddon A., McDowell I., Papaioannou A. Oral vitamin B12 versus intramuscular vitamin B12 for vitamin B12 defi ciency. The Cochrane database of systematic reviews. 2005;(3). DOI: 10.1002/14651858.CD004655.PUB2

94. Favrat B., Vaucher P., Herzig L., Burnand B., Ali G., Boulat O., Bischoff T., Verdon F. Oral vitamin B12 for patients suspected of subtle cobalamin defi ciency: a multicentre pragmatic randomised controlled trial. BMC family practice. 2011;12. DOI: 10.1186/1471-2296-12-2

95. Greibe E., Mahalle N., Bhide V., Fedosov S., Heegaard C.W., Naik S., Nexo E. Eff ect of 8-week oral supplementation with 3-μg cyano-B12 or hydroxo-B12 in a vitamin B12-defi cient population. European journal of nutrition. 2019;58(1):261–270. DOI: 10.1007/S00394-017-1590-0

96. Sun Y., Lai M., Lu C. Eff ectiveness of vitamin B12 on diabetic neuropathy: systematic review of clinical controlled trials. Acta Neurologica Taiwanica. 2005;14(2):48–54. Accessed September 21, 2021. https://www.ncbi.nlm.nih.gov/books/NBK72015/

97. Fonseca V.A., Lavery L.A, Thethi T.K., Daoud Y., DeSouza C., Ovalle F., Denham D.S., Bottiglieri T., Sheehan P., Rosenstock J. Metanx in type 2 diabetes with peripheral neuropathy: a randomized trial. The American journal of medicine. 2013;126(2):141–149. DOI: 10.1016/J.AMJMED.2012.06.022

98. Didangelos T., Karlafti E., Kotzakioulafi E., Margariti E., Giannoulaki P., Batanis G., Tesfaye S., Kantartzis K. Vitamin B12

99. Supplementation in Diabetic Neuropathy: A 1-Year, Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients. 2021;13(2):395. DOI: 10.3390/NU13020395

100. Jatoi S., Hafeez A., Riaz S.U., Ali A., Ghauri M.I., Zehra M. Low Vitamin B12 Levels: An Underestimated Cause Of Minimal Cognitive Impairment And Dementia. Cureus. 2020;12(2). DOI: 10.7759/CUREUS.6976

101. Eastley R., Wilcock G., Bucks R. S. Vitamin B12 defi ciency in dementia and cognitive impairment: The eff ects of treatment on neuropsychological function. International Journal of Geriatric Psychiatry. 2000;15(3):226–233. Accessed September 21, 2021. https://www.researchgate.net/publication/12601439_Vitamin_B12_defi ciency_in_dementia_and_cognitive_impair ment_The_eff ects_of_treatment_on_neuropsychological_function.

102. Meyer H.E., Willett W.C., Fung T.T., Holvik K., Feskanich D. Association of High Intakes of Vitamins B6 and B12 From Food and Supplements With Risk of Hip Fracture Among Postmenopausal Women in the Nurses’ Health Study. JAMA network open. 2019;2(5). DOI: 10.1001/JAMANETWORKOPEN.2019.3591

103. Ebbing M., Bønaa K.H., Nygård O., Arnesen E., Ueland P.M., Nordrehaug J.E., Rasmussen K., Njølstad I., Refsum H., Nilsen D.W., Tverdal A., Meyer K., Vollset S.E. Cancer incidence and mortality after treatment with folic acid and vitamin B12. JAMA. 2009;302(19):2119–2126. DOI: 10.1001/JAMA.2009.1622

104. Flores-Guerrero J.L., Minovic I., Groothof D., Gruppen E.G., Riphagen I.J., Kootstra-Ros J., Kobold A.M., Hak E., Navis G., Gansevoort R.T., Borst M.H. de, Dullaart R.P.F., Bakker S.J.L. Association of Plasma Concentration of Vitamin B-12 With AllCause Mortality in the General Population in the Netherlands. Jama network open. 2020;3(1):e1919274. DOI: 10.1001/JAMANETWORKOPEN.2019.19274

105. Wolff enbuttel B.H.R., Heiner-Fokkema M.R., Green R., Gans R.O.B. Relationship between serum B12 concentrations and mortality: experience in NHANES. BMC medicine. 2020;18(1). DOI: 10.1186/S12916-020-01771-Y


Рецензия

Для цитирования:


Шульпекова Н.В., Белая Ж.Е., Галстян Г.Р. Роль витамина B12 в физиологии и при эндокринопатиях. Клиническая медицина. 2021;99(9-10):509-520. https://doi.org/10.30629/0023-2149-2021-99-9-10-509-520

For citation:


Shulpekova N.V., Belaya Zh.E., Galstyan G.R. Actualization of the role of Vitamin B12 in physiology and endocrine disorders. Clinical Medicine (Russian Journal). 2021;99(9-10):509-520. (In Russ.) https://doi.org/10.30629/0023-2149-2021-99-9-10-509-520

Просмотров: 533


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0023-2149 (Print)
ISSN 2412-1339 (Online)