STUDI PEMBAKARAN SPONTAN BATUBARA MENGGUNAKAN METODE PEMANASAN ADIABATIK PADA SKALA LABORATORIUM

Penulis

  • Nuhindro Priagung Widodo Kelompok Keahlian Teknik Pertambangan, Institut Teknologi Bandung
  • Edo Syawaludin Bidang Perencanaan dan Pengendalian Produksi, PT Timah Tbk.
  • Zaenal Arifin PT. Pamapersada Nusantara

DOI:

https://doi.org/10.30556/jtmb.Vol16.No2.2020.1066

Kata Kunci:

pembakaran spontan, batubara, adiabatik, energi aktivasi

Abstrak

Untuk mengatasi kejadian pembakaran spontan batubara yang merugikan, dibutuhkan suatu metode yang dapat mengenali potensi pembakaran spontan batubara. Pada penelitian ini Metode Oksidasi Adiabatik dipelajari untuk menggambarkan proses reaksi oksidasi batubara pada suhu 40-70 °C. Percontoh yang digunakan adalah batubara high-volatile C bituminous. Parameter yang diamati adalah ukuran butir, debit suplai oksigen (pada 100% O2) dan kompaksi. Satu buah percontoh memiliki berat 220 gram. Sebanyak 24 percontoh batubara di uji dengan alat pemanas oksidasi adiabatik dan dicatat temperaturnya selama waktu pengujian. Dari hasil penelitian terlihat bahwa nilai laju pembakaran spontan (R70) terbesar adalah 13,2719 °C/jam pada perontoh dengan ukuran 10-14 mesh (1,410 mm) tanpa kompaksi dengan debit oksigen 0,1 L/menit. Pada percontoh dengan ukuran 170-200 mesh (0,081 mm) tanpa kompaksi dengan debit oksigen 0,05 L/menit, nilai laju pembakaran spontan (R70) terbesar adalah 14,75 °C/jam. Selain itu, nilai energi aktivasi pada kedua percontoh tersebut merupakan yang terendah pada masing-masing kelompok pengujian, yaitu 13,10 kJ/mol dan 11,22 kJ/mol. Semakin kecil ukuran butir dan pada kondisi tanpa kompaksi, semakin meningkat nilai indeks R70 dan semakin mudah batubara terbakar. Dari kedua pengujian terlihat bahwa ukuran butir dan kompaksi memiliki pengaruh besar terhadap terjadinya pembakaran spontan batubara. Pengaruh debit oksigen tidak memperlihatkan kecenderungan (korelasi) pada kedua pengujian.

Referensi

Aristien, H. dan Widodo, N. P. (2015) “Modeling of coal temperature distribution to estimate rate of temperature increase on coal stockpile spontaneous combustion using finite difference method,” in International Symposium on Earth Science and Technology 2015. Bandung: Institut Teknologi Bandung.

ASTM D388-15 (2017) “Standard classification of coals by rank,” in Annual Book of ASTM Standards. 05.06. ASTM International, hal. 460–466.

Beamish, B., McLellan, P., Endara, H., Turunc, U. dan Raab, M. (2013) “Delaying spontaneous combustion of reactive coals through inhibition,” in Aziz, N. et al. (ed.) 13th Coal Operators’ Conference. University of Wollongong, the Australasian Institute of Mining and Metallurgy & Mine Managers Association of Australia, hal. 221–226.

Beamish, B. dan Beamish, R. (2010) “Benchmarking moist coal adiabatic oven testing,” in Aziz, N. (ed.) 2010 Underground Coal Operators’ Conference. University of Wollongong & the Australasian Institute of Mining and Metallurgy, hal. 264–268.

Beamish, B. dan Beamish, R. (2011) “Experience with using a moist coal adiabatic oven testing method for spontaneous combustion assessment,” in Aziz, N. (ed.) 11th Underground Coal Operators’ Conference. University of Wollongong & the Australasian Institute of Mining and Metallurgy, hal. 380–384.

Beamish, B., Edwards, D. dan Theiler, J. (2018) “Implementation of interactive spontaneous combustion hazard assessment and management at Meandu mine,” in Aziz, N. dan Kininmonth, B. (ed.) 18th Coal Operators’ Conference. The University of Wollongong, hal. 329–335.

Cliff, D., Brady, D. dan Watkinson, M. (2014) “Developments in the management of spontaneous combustion in Australian underground coal mines,” in Naj Aziz et al. (ed.) 2014 Coal Operators’ Conference. University of Wollongong - Mining Engineering, Australasian Institute of Mining and Metallurgy and the Mine Managers Association of Australia, hal. 330–338.

Moran, M. J., Shapiro, H. N., Boettner, D. D. dan Bailey, M. B. (2018) Fundamentals of engineering thermodynamics. 9th ed. Wiley.

Nalbandian, H. (2010) Propensity of coal to self-heat. London: IEA Clean Coal Centre.

Pamungkas, S. A., Widodo, N. P., Kusuma, G. J., Prata, D. A., Sasaki, K., Sugai, Y. dan Widiatmodjo, A. (2014) “Study of spontaneous combustion characteristic using convectional air flow testing method at laboratory on Ombilin Region’s coal,” in International Symposium on Earth Science and Technology 2014. Fukuoka.

Saffari, A., Ataei, M. dan Sereshki, F. (2019) “Evaluation of the spontaneous combustion of coal (SCC) by using the R70 test method based on the correlation among intrinsic coal properties (Case study: Tabas Parvadeh coal mines, Iran),” Rudarsko-geološko-naftni zbornik, 34(3), hal. 49–60. doi: 10.17794/rgn.2019.3.6.

Sasaki, K., Wang, Y., Sugai, Y. dan Zhang, X. (2014) “Numerical modelling of low rank coal for spontaneous combustion,” in Aziz, N. (ed.) 2014 Coal Operators’ Conference. University of Wollongong - Mining Engineering, Australasian Institute of Mining and Metallurgy and the Mine Managers Association of Australia, hal. 344–349.

Sloss, L. L. (2015) Assessing and managing spontaneous combustion of coal. IEA Clean Coal Centre.

Wang, Y., Zhang, X., Zhang, H. dan Sasaki, K. (2019) “Effects of temperature gradient and particle size on self-ignition temperature of low-rank coal excavated from inner Mongolia, China,” Royal Society Open Science, 6(9), hal. 190374. doi: 10.1098/rsos.190374.

Widodo, N. P., Sulistianto, B. dan Ihsan, A. (2018) “Analysis of explosion risk factor potential on coal reclaim tunnel facilities by modified analytical hierarchy process,” International Journal of Coal Science & Technology, 5(3), hal. 339–357. doi: 10.1007/s40789-018-0219-0.

Zhang, W., Jiang, S., Wang, K., Wang, L., Xu, Y., Wu, Z., Shao, H., Wang, Y. dan Miao, M. (2015) “Thermogravimetric dynamics and FTIR analysis on oxidation properties of low-rank coal at low and moderate temperatures,” International Journal of Coal Preparation and Utilization, 35(1), hal. 39–50. doi: 10.1080/19392699.2013.873421.

Zhang, Y., Wu, J., Chang, L., Wang, J., Xue, S. dan Li, Z. (2013) “Kinetic and thermodynamic studies on the mechanism of low-temperature oxidation of coal: A case study of Shendong coal (China),” International Journal of Coal Geology, 120, hal. 41–49. doi: 10.1016/j.coal.2013.09.005.

Unduhan

Diterbitkan

2020-05-29

Cara Mengutip

Widodo, N. P., Syawaludin, E. dan Arifin, Z. (2020) “STUDI PEMBAKARAN SPONTAN BATUBARA MENGGUNAKAN METODE PEMANASAN ADIABATIK PADA SKALA LABORATORIUM”, Jurnal Teknologi Mineral dan Batubara, 16(2), hlm. 81–91. doi: 10.30556/jtmb.Vol16.No2.2020.1066.