Investigating the Effects of Thickness on the Performance of ZnO-Based DSSC

Document Type : Original Article

Authors

Thin Layer and Nanotechnology Laboratory, Department of Chemical Technology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.

Abstract

Zinc oxide nanostructures exhibit unique properties which make them suitable for dye-sensitized solar cell applications. Their specific properties such as appropriate optical properties, proper energy band gap and high electron transfer characteristics have motivated researchers to use them in the fabrication of dye-sensitized solar cell photo-anodes. In the present study, the effect of thickness on the performance of a new ZnO photo-anode has been studied. All the photovoltaic parameters of the cells fabricated using N719 ruthenium dye were measured. SEM technique was utilized to determine the thickness and the UV-Visible method was used to study the transparent properties of the photo-anodes. Electrochemical impedance spectroscopy technique was employed to determine the appropriate equivalent circuit for studying the electron transfer mechanisms in all the fabricated cells. The results demonstrated that the ZnO thickness is a critical parameter for providing either sufficient resistance to suppress the charge recombination process or appropriate electron transferring properties. The optimized ZnO photo-anode was obtained at a thickness of 19 µm, which resulted in an efficiency of 3.22%.

Keywords


  1. J. Khan, M. H. Arsalan, Solar power technologies for sustainable electricity generation-A review, Renew. Sustain. Energy Rev., 55(2016), 414-425.
  2. J. Gong, K. Sumathy, Q. Qiao, Z. Zhou, Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends, Renew. Sustain. Energy Rev., 68(2017), 234-246.
  3.                 S. A. Kazmi, S. Hameed, A. S. Ahmed, M. Arshad, A. Azam, Electrical and optical properties of graphene-TiO2 nanocomposite and its applications in dye sensitized solar cells (DSSC). J. Alloys and Compd., 691(2017), 659-665.
  4. A. Hegazy, N. Kinadjian, B. Sadeghimakki, S. Sivoththaman, N. K. Allam, E. Prouzet, TiO2 nanoparticles optimized for photoanodes tested in large area dye-sensitized solar cells (DSSC), Sol. Energy. Mater. Sol. Cells, 153(2016), 108-116.
  5. C. Y. Lin, Y. H. Lai, H. W. Chen, J. G. Chen, C. W. Kung, R. Vittal, K. C. Ho, Highly efficient dye-sensitized solar cell with a ZnO nanosheet-based photoanode, Energy Environ. Sci., 4(2011), 3448-3455.
  6. M. U. Rahman, M. Wei, F. Xie, M. Khan, Efficient dye-sensitized solar cells composed of nanostructural ZnO doped with Ti, Catalysts, 9(2019), 273-284.
  7. T. Marimuthu, A. K. Narayanasamy, T. Rangasamy, S. Surya, Facile growth of ZnO nanowire arrays and nanoneedle arrays with flower structure on ZnO-TiO2 seed layer for DSSC applications, J. Alloy Compd., 693(2017), 1011-1019.
  8. Q. Zhang, C. Li, TiO2 coated ZnO nanorods by mist chemical vapor deposition for application as photoanodes for dye-sensitized solar cells, Nanomaterials, 9(2019), 1339-1352.
  9. S. Rasouli, Sh. Saket, One step rapid synthesis of nano-crystalline ZnO by microwave-assisted solution combustion methodS Rasouli Sh Saket , Prog. Color. Color. Coat., 3(2010), 19-25.
  10. Y. He, J. Hu, Y. Xie, High-efficiency dye-sensitized solar cells of up to 8.03% by air plasma treatment of ZnO nanostructures, Chem. Commun., 51(2015), 16229-16232.
  11. M. Ye, X. Wen, M. Wang, J. Locozzia, N. Zhang, C. Lin, Z. Lin, Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes, Mater. Today, 18(2015), 155-162.
  12. R. Vittal, K. C. HO, Zinc oxide dye-sensitized solar cells: A review, Renew. Sustain. Energy Rev., 70(2017), 920-935.
  13. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. E. F. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. Khaja Nazeeruddin, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nature Chem., 6(2014), 242-247.
  14. S. S. Khadtare and H. M. Pathan, Rose bengal sensitized ZnO photoelectrode for dye sensitized solar cell: optimizingthe performance, J. Renew. Sustain. Energy, 6(2014), 053131-053138.
  15. K. Premaratne, G. R. A. Kumara, R. M. G. Rajapakse, and M. L. Karunarathne, Highly efficient, optically semi-transparent, ZnO-based dye-sensitized solar cells with indoline D -358 as the dye,  J. Photochem. Photobiol. A: chem., 229(2012), 29-32.
  16. A. B. F. Martinson, T. W. Hamann, M. J. Pellin, J. T. Hupp, New architectures for dye-sensitized solar cells, Chem. Eur. J., 14(2008), 4458-4467.
  17. C. C. Raj, R. Prasanth, A critical review of recent developments in nanomaterials for photoelectrodes in dye sensitized solar cells. J. Power Sources, 317(2016), 120–132.
  18. J. Han, F. Fan, C. Xu, S. Lin, M. Wei, X. Duan, Z. L. Wang, ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices, Nanotechnology, 21(2010), 405203-405209.
  19. K. Keis, C. Bauer, G. Boschloo, A. Hagfeldt, K. Westermark, H. Rensmo, H. Siegbahn, Nanostructured ZnO electrodes for dye-sensitized solar cell applications, J. Photochem. Photobiol. A: chem., 148(2002), 57-64.
  20. G. S. Selopal, H. P. Wu, J. Lu, Y. Chang, M. Wang, A. Vomiero, I. Concina, E. W. G. Diau, Metal-free organic dyes for TiO2 and ZnO dye-sensitized solar cells, Scientific Reports, 6(2016), 18756- 18767.
  21. J. Patwari, S. Shyamal, T. Khan, H. Ghadi, C. Bhattacharya, S. Chakrabarti, S. K. Pal, Inversion of activity in DSSC for TiO2 and ZnO photo-anodes depending on the choice of sensitizer and carrier dynamics, J. Lumin., 207(2019), 169-176.
  22. Z. S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell, Coord. Chem. Rev., 248(2004), 1381-1389.
  23. S. H. Kang, J. Y. Kim, H. S, Kim, H. D. Koh, J. S. Lee, Y. E Sung, Influence of light scattering particles in the TiO2 photoelectrode for solid-state dye-sensitized solar cell, J Photochem. Photobiol. A: chem., 200(2008), 294-300.
  24. S. Ito, M. Nazeeruddin, P. Liska, P. Comte,R. Charvet, P,Péchy, M, Jirousek, A. Kay, S. Zakeeruddin, M. Grätzel, Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells, Prog. Photovolt. Res. Appl., 14(2006), 589-601.
  25. Y, Qiu, W. Chen, S. Yang, Double-layered photoanodes from variable-size anatase TiO2 nanospindles: A candidate for high-efficiency dye-sensitized solar cells, Angew Chem. Int. Ed., 49(2010), 3675-3679.
  26. M. Ranjbar, S. A. Mozaffari, E. Kouhestanian, H. Salar Amoli, Sonochemical synthesis and characterization of a Zn(II) supramolecule, bis(2,6 diaminopyridinium)bis(pyridine-2,6-dicarboxylato)zincate(II), as a novel precursor for the ZnO-based dye sensitizer solar cell, J. Photochem. Photobiol. A: Chem., 321(2016), 110–121.
  27. B. O’Regan. M. Grätzel, A low-coat, high-efficiency solar cell based on dye-sensitized colloidal TiO2 film. Nature, 353(1991), 737-739.
  28. W. C. Chang, C. H. Lee, W. C. Yu, C. M. Lin, Optimization of dye adsorption time and film thickness for efficient ZnO dye-sensitized solar cells with high at-rest stability, Nanoscale Research Letters, 7(2012), 688-697.
  29. S. Ito, T. Murakami, P. Comte, P. Liska, C. Grätzel, M. Nazeeruddin, M. Grätzel, Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%, Thin Solid Films, 516(2008), 4613-4619.
  30. N. Tounsi, M. M. Habchi, Z. Chine, A. Rebey, B. E. Jani, Optical properties study of In.08Ga.92As/GaAs using spectral reflectance, photoreflectance and near-infrared Photoluminescence, Superlattice. Microstruct., 59(2013), 133-143.
  31. Q. Zhang, G. Cao, Hierarchically structured photoelectrodes for dye-sensitized solar cells, J. Mater. Chem., 21(2011), 6769-6774.
  32. S. A. Mozaffari, M. Ranjbar, E. Kouhestanian, H. Salar Amoli, M. H. Armanmehr, An investigation on the effect of electrodeposited nanostructured ZnO on the electron transfer process efficiency of TiO2 based DSSC, Mater. Sci. Semicon. Proc., 40(2015), 285-292.
  33. B. Tan, Y.Y. Wu, Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites, J. Phys. Chem. B, 110(2006), 15932-15938.
  34. B. Lee, D. K. Hwang, P. Guo, S. T. Ho, D. B. Buchholtz, C. Y. Wang, R. P. H. Chang, Materials, interfaces, and photon confinement in dye-sensitized solar cells, J. Phys. Chem. B, 114(2010), 14582-14591.
  35. S. Khadtarea, A. S. Ansari, H. M. Pathan, S. H. Hana, K. M. Mahadevan, S. D. Mane, C. Bathula Silver nanoparticles loaded ZnO photoelectrode with Rose Bengal as a sensitizer for dye sensitized solar cells, Inorg. Chem. commun., 104(2019), 155-159.
  36. S. Khadtare, A. S. Bansode, V. L. Mathe, N. K. Shrestha, C. Bathula, S. H. Han, H. M. Pathan, Effect of oxygen plasma treatment on performance of ZnO based dye sensitized solar cells, J. Alloys and Compd., 72415(2017), 348-352.
  37. S. Khadtare, A. Ware, S. A. S. Gawali, S. R. Jadkar, H. M. Pathan, S. S. Pingale, Dye sensitized solar cell with lawsone dye using ZnO photoanode: experimental and TD-DFT study, RSC Adv., 5(2015), 17647-17652.
  38. P. Du, L. Songa, J. Xiong, N. Li, Z. Xi, L. Wang, D. Jin, S. Guob, Y. Yuan, Coaxial electrospun TiO2/ZnO core–sheath nanofibers film: Novel structure for photoanode of dye-sensitized solar cells, Electrochim. Acta, 78(2012), 392-397.
  39. S. H. Kang, J. Y. Kim, Y. Y. Kim, H. S. Kim, Y. E. Sung, Surface modification of stretched TiO2 nanotubes for solid-state dye-sensitized solar cells, J. Phys. Chem. C, 111(2007),  9614-9623.
  40. S. A. Mozaffari, R. Rahmanian, M. Abedi, H. Salar Amoli, Urea impedimetric biosensor based on reactive RF magnetron sputtered zinc oxide nanoporous transducer,Electrochim. Acta, 146(2014), 538-547.
  41. S. A. Mozaffari, H. Salar Amoli, S. Simorgh, R. Rahmanian, Impedimetric thiourea sensing in copper electrorefining bath based on DC magnetron sputtered nanosilver as highly uniform transducer, Electrochim. Acta, 184 (2015) 475-482.
  42. R. Rahmanian, S. A. Mozaffari, Electrochemical fabrication of ZnO-polyvinyl alcohol nanostructured hybrid film for application to urea biosensor, Sensor Actuator B: chem., 207(2015), 772-787.
  43. F. F. Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S. M. Zakeeruddin, M. Grätzel, Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids, J. Phys. Chem. C, 111(2007), 6550-6560.
  44. J. Bisquert, F. F. Santiago, I. M. Ser, G. G. Belmonte, S. Gimenez, Electron lifetime in dye-sensitized solar cells: Theory and interpretation of measurements, J. Phys. Chem. C,  113(2009), 17278-17290.
  45. R. J. Jennings, F. Li, Q. Wang, Reliable determination of electron diffusion length and charge separation efficiency in dye-sensitized solar cells, J. Phys. Chem. C, 114(2010), 14665–14674.
  46. Q. Wang, S. Ito, M. Grätzel, F. F. Santiago, I. M. Sero, J. Bisquert, T. Bessho, H. Imai, Characteristics of high efficiency dye-sensitized solar cells, J. Phys. Chem. B, 110(2006), 25210-25221.
  47. P. T. Hsiao, Y. L. Tung, H. Teng, Electron transport patterns in TiO2 nanocrystalline films of dye-sensitized solar cells, J. Phys. Chem. C, 114(2010), 6762-6769.