بررسی رفتار ارتعاشی نانولوله‌های کربنی ویسکوالاستیک تحت میدان مغناطیسی بر اساس تئوری غیرموضعی تیر تیموشنکو

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 استادیار، گروه مهندسی مکانیک، دانشگاه شهید مدنی آذربایجان، تبریز

2 استاد، دانشکده مهندسی مکانیک، دانشگاه تبریز

3 دکترا، دانشکده مهندسی مکانیک، دانشگاه تبریز

چکیده

رفتار ارتعاشات عرضی و پایداری نانولوله‌های ویسکوالاستیک تحت میدان مغناطیسی به صورت تحلیلی بررسی شده است. با در نظر گرفتن تئوری غیرموضعی مدل تیر تیموشنکو و بکارگیری تئوری ویسکوالاستیک جامد استاندارد خطی، معادلات دیفرانسیل حاکم بر حرکت استخراج شده است. نیروی مغناطیسی لورنتس حاصل از میدان مغناطیسی با استفاده از معادلات ماکسول محاسبه و از حل تحلیلی معادله مقدار ویژه برای نانولوله با شرایط مرزی تکیه‌گاه‌های ساده در دو انتها استخراج شده است. در ادامه اثر شدت میدان مغناطیسی، ضریب لاغری و پارامتر غیرموضعی روی فرکانس‌های طبیعی و بار کمانشی سیستم مطالعه شده است. پس از بررسی صحت مدل، نتایج با استفاده از نمودارها و جداول مناسبی ارائه شده و مورد بحث و بررسی قرار گرفته است.

کلیدواژه‌ها

موضوعات


[1] Karim-Nezhad, G., Khorablou, Z., and Dorraji, P. S., “Modification of Glassy Carbon Electrode with a Bilayer of Multiwalled Carbon Nanotube/Poly (l-arginine) in the Presence of Surfactant: Application to Discrimination and Simultaneous Electrochemical Determination of Dihydroxybenzene Isomers”, Journal of the Electrochemical Society, Vol. 163, No. 7, pp. B358-B365, (2016).
[2] Wu, H. L., Kitipornchai, S., and Yang, J., "Thermal Buckling and Postbuckling Analysis of Functionally Graded Carbon Nanotube-Reinforced Composite Beams", Vol. 846, pp. 182-187, (2016).
[3] Togun, N., “Nonlocal Beam Theory for Nonlinear Vibrations of a Nanobeam Resting on Elastic Foundation”, Boundary Value Problems, Vol. 2016, No. 1, pp. 1-14, (2016).
[4] Eringen, A. C., “On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves”, Journal of Applied Physics, Vol. 54, No. 9, pp. 4703- 4710, (1983).
[5] Mindlin, R., and Tiersten, H., “Effects of Couple-Stresses in Linear Elasticity”, Archive for Rational Mechanics and Analysis, Vol. 11, No. 1, pp. 415-448, (1962).
[6] Aifantis, E., “Strain Gradient Interpretation of Size Effects”, International Journal of Fracture, Vol. 95, No. 1-4, pp. 299-314, (1999).
[7] Gurtin, M., Weissmüller, J., and Larche, F., “A General Theory of Curved Deformable Interfaces in Solids at Equilibrium”, Philosophical Magazine A, Vol. 78, No. 5, pp. 1093- 1109, (1998).
[8] Yang, F., Chong, A., Lam, D., and Tong, P., “Couple Stress Based Strain Gradient Theory for Elasticity”, International Journal of Solids and Structures, Vol. 39, No. 10, pp. 2731- 2743, (2002).
[9] Lam, D., Yang, F., Chong, A., Wang, J., and Tong, P., “Experiments and Theory in Srain Gradient Elasticity”, Journal of the Mechanics and Physics of Solids, Vol. 51, No. 8, pp. 1477-1508, (2003).
[10] Zhen, Y., “Vibration and Instability Analysis of Double-Carbon Nanotubes System Conveying Fluid”, Journal of Nanomechanics and Micromechanics, Vol. 6, No. 4, pp. 04016008, (2016).
[11] Wang, Y.Z., Wang, Y.S., and Ke, L.L., “Nonlinear Vibration of Carbon Nanotube Embedded in Viscous Elastic Matrix under Parametric Excitation by Nonlocal Continuum Theory”, Physica E: Low-dimensional Systems and Nanostructures, Vol. 83, pp. 195-200, (2016).
[12] Zhang, Y., Wang, C., and Challamel, N., “Bending, Buckling, and Vibration of Micro/Nanobeams by Hybrid Nonlocal Beam Model”, Journal of Engineering Mechanics, Vol. 136, No. 5, pp. 562-574, (2009).
[13] Phadikar, J., and Pradhan, S., “Variational Formulation and Finite Element Analysis for Nonlocal Elastic Nanobeams and Nanoplates”, Computational Materials Science, Vol. 49, No. 3, pp. 492-499, (2010).
[14] Ansari, R., and Sahmani, S., “Bending Behavior and Buckling of Nanobeams Including Surface Stress Effects Corresponding to Different Beam Theories”, International Journal of Engineering Science, Vol. 49, No. 11, pp. 1244-1255, (2011).
[15] Ghannadpour, S., Mohammadi, B., and Fazilati, J., “Bending, Buckling and Vibration Problems of Nonlocal Euler Beams using Ritz Method”, Composite Structures, Vol. 96, pp. 584-589, (2013.
[16] Robinson, M. T. A., and Adali, S., “Buckling of Nonuniform and Axially Functionally Graded Nonlocal Timoshenko Nanobeams on Winkler-Pasternak Foundation”, Composite Structures, Vol. 206, pp. 95-103, (2018).
[17] Ghadiri, M., Shafiei, N., and Akbarshahi, A., “Influence of Thermal and Surface Effects on Vibration Behavior of Nonlocal Rotating Timoshenko Nanobeam”, Applied Physics A, Vol. 122, No. 7, pp. 1-19, (2016).
[18] Ansari, R., Oskouie, M. F., Gholami, R., and Sadeghi, F., “Thermo-Electro-Mechanical Vibration of Postbuckled Piezoelectric Timoshenko Nanobeams Based on the Nnonlocal Elasticity Theory”, Composites Part B: Engineering, Vol. 89, pp. 316-327, (2016).
[19] Bahrami, A., and Teimourian, A., “Study on the Effect of Small Scale on the Wave Rreflection in Carbon Nanotubes using Nonlocal Timoshenko Beam Theory and Wave Propagation Approach”, Composites Part B: Engineering, Vol. 91, pp. 492-504, (2016).
[20] Wang, C., Zhang, Y., Ramesh, S. S., and Kitipornchai, S., “Buckling Analysis of Microand Nano-Rods/Tubes Based on Nonlocal Timoshenko Beam Theory”, Journal of Physics D: Applied Physics, Vol. 39, No. 17, pp. 3904, (2006).
[21] Benzair, A., Tounsi, A., Besseghier, A., Heireche, H., Moulay, N., and Boumia, L., “The Thermal Effect on Vibration of Single-Walled Carbon Nanotubes using Nonlocal Timoshenko Beam Theory”, Journal of Physics D: Applied Physics, Vol. 41, No. 22, pp. 225404, (2008).
[22] Gang-Feng, W., and Xi-Qiao, F., “Timoshenko Beam Model for Buckling and Vibration of Nanowires with Surface Effects”, Journal of Physics D: Applied Physics, Vol. 42, No. 15, pp. 155411, (2009).
[23] Kiani, K., “Application of Nonlocal Higher-Order Beam Theory to Transverse Wave Analysis of Magnetically Affected Forests of Single-Walled Carbon Nanotubes”, International Journal of Mechanical Sciences, Vol. 138, pp. 1-16, (2018).
[24] Jalaei, M., Arani, A. G., and Nguyen-Xuan, H., “Investigation of Thermal and Magnetic Field Effects on the Dynamic Instability of FG Timoshenko Nanobeam Employing Nonlocal Strain Gradient Theory”, International Journal of Mechanical Sciences, Vol. 161, pp. 105043, (2019).
[25] Jalaei, M., and Civalek, Ӧ., “On Dynamic Instability of Magnetically Embedded Viscoelastic Porous FG Nanobeam”, International Journal of Engineering Science, Vol. 143, pp. 14-32, (2019).
[26] Xu, C., Rong, D., Tong, Z., Zhou, Z., Hu, J., and Xu, X., “Coupled Effect of In-Plane Magnetic Field and Size Effect on Vibration Properties of the Completely Free Double- Layered Nanoplate System”, Physica E: Low-dimensional Systems and Nanostructures, Vol. 108, pp. 215-225, (2019).
[27] Avsec, J., and Oblak, M., “Thermal Vibrational Analysis for Simply Supported Beam and Clamped Beam”, Journal of Sound and Vibration, Vol. 308, No. 3, pp. 514-525, (2007).
[28] Kiani, K., “Longitudinal, Transverse, and Torsional Vibrations and Stabilities of Axially Moving Single-Walled Carbon Nanotubes”, Current Applied Physics, Vol. 13, No. 8, pp. 1651-1660, (2013).
[29] Eltaher, M., Khater, M., and Emam, S. A., “A Review on Nonlocal Elastic Models for Bending, Buckling, Vibrations, and Wave Propagation of Nanoscale Beams”, Applied Mathematical Modelling, Vol. 40, No. 5, pp. 4109-4128, (2016).
[30] Reddy, J., “Nonlocal Theories for Bending, Buckling and Vibration of Beams”, International Journal of Engineering Science, Vol. 45, No. 2, pp. 288-307, (2007).
[31] Arani, A., Maboudi, M., Arani, A. G., and Amir, S., “2D-Magnetic Field and Biaxiall In- Plane Pre-Load Effects on the Vibration of Double Bonded Orthotropic Ggraphene Sheets”, J Solid Mech, Vol. 5, No. 2, pp. 193-205, (2013).
[32] Karličić, D., Cajić, M., Murmu, T., Kozić, P., and Adhikari, S., “Nonlocal Effects on the Longitudinal Vibration of a Complex Multi-Nanorod System Subjected to the Transverse Magnetic Field”, Meccanica, Vol. 50, No. 6, pp. 1605-1621, (2015).
[33] Bahaadini, R., and Hosseini, M., “Nonlocal Divergence and Flutter Instability Analysis of Embedded Fluid-Conveying Carbon Nanotube under Magnetic Field”, Microfluidics and Nanofluidics, Vol. 20, No. 7, pp. 1-14, (2016).
[34] Rao, S. S., “Vibration of Continuous Systems”, John Wiley & Sons, New York, (2007).
[35] Wang, Q., and Varadan, V., “Vibration of Carbon Nanotubes Studied using Nonlocal Continuum Mechanics”, Smart Materials and Structures, Vol. 15, No. 2, pp. 659, (2006).
[36] Ansari, R., Oskouie, M. F., Sadeghi, F., and Bazdid-Vahdati, M., “Free Vibration of Fractional Viscoelastic Timoshenko Nanobeams using the Nonlocal Elasticity Theory”, Physica E: Low-dimensional Systems and Nanostructures, Vol. 74, pp. 318-327, (2015).
[37] Ghadiri, M., Soltanpour, M., Yazdi, A., and Safi, M., “Studying the Influence of Surface Effects on Vvibration Behavior of Size-Dependent Cracked FG Timoshenko Nanobeam Cnsidering Nonlocal Elasticity and Elastic Foundation”, Applied Physics A, Vol. 122, No. 5, pp. 1-21, (2016).
[38] Wang, Q., “Wave Propagation in Carbon Nanotubes via Nonlocal Continuum Mechanics”, Journal of Applied Physics, Vol. 98, No. 12, pp. 124301, (2005).
[39] Ebrahimi, F., and Barati, M. R., “Flexural Wave Propagation Analysis of Embedded SFGM Nanobeams under Longitudinal Magnetic Field Based on Nonlocal Strain Gradient Theory”, Arabian Journal for Science and Engineering, Vol. 42, No. 5, pp. 1-12, (2016).
[40] Rao, S. S., “Vibration of Continuous Systems”, John Wiley & Sons, New York, (2019).