نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، پژوهشکده انرژی، پژوهشگاه مواد و انرژی، مشکین دشت، البرز، ایران

2 استادیار، پژوهشکده انرژی، پژوهشگاه مواد و انرژی، مشکین دشت، البرز، ایران

چکیده

نظر به پتانسیل مناسب انرژی بادی در ایران، امکان بهره‌گیری از توربین‌های بادی کوچک همانند توربین‌های بزرگ برای تأمین بخشی از برق موردنیاز کشور وجود دارد. تحقیق حاضر به مواد مورد استفاده در تولید پره توربین بادی محور افقی کوچک و روش‌های ساخت آن می‌پردازد. به ­این­ منظور چوب و کامپوزیت، به‌عنوان دو ماده اصلی مورد استفاده در ساخت پره، بررسی شده ­اند. در ادامه، روش‌های اصلی تولید پره‌های چوبی شامل ماشین‌های براده­ بردار رایانه‌ای، کنترل عددی و کپی‌تراش و همچنین روش‌های تولید پره‌های کامپوزیتی ازجمله لایه­ چینی خیس، پیش‌آغشته، تزریق رزین و قالب‌گیری تحت فشار مطالعه شده‌اند. سپس روش چاپ سه‌بعدی و مواد پلیمری مورد استفاده در آن به‌منظور تولید پره معرفی شده است. بررسی انجام‌گرفته نشان می‌دهد که پارامتر خستگی، نقش مهمی در تعیین جنس پره دارد و انتخاب روش ساخت با توجه‌به نوع کاربرد و تعداد پره موردنظر، نیازمند تحلیل اقتصادی مرتبط است. باوجود مزایای زیست‌محیطی چوب، پیچیدگی‌ها و هزینه ساخت پره چوبی مانع از تولید سریع و ارزان آن است؛ اما استفاده از کامپوزیت، هرچندکه همراه با معضلات زیست‌محیطی است، برای تولید انبوه پره، اقتصادی‌تر است. روش چاپ سه‌بعدی علیرغم ضعف‌ خستگی، روشی سریع و نسبتاً ارزان برای تولید مدل توربین بادی کوچک برای انجام آزمایش‌های تونل باد است.

کلیدواژه‌ها

عنوان مقاله [English]

Materials and Manufacturing Techniques of Small Horizontal Axis Wind Turbine Blade

نویسندگان [English]

  • Abbas Akbari Jouchi 1
  • Abolfazl Pourrajabian 2
  • Saeed Rahgozar 2
  • Maziar Dehghan 2

1 M. Sc. Student, Department of Energy, Materials and Energy Research Center (MERC), MeshkinDasht, Alborz, Iran

2 Assistant professor, Department of Energy, Materials and Energy Research Center (MERC), MeshkinDasht, Alborz, Iran

چکیده [English]

Regarding the suitable potential for wind energy in Iran, it is possible to employ small wind turbines such as large ones to supply part of the electricity load of the country. The present study deals with materials used in small horizontal axis wind turbine blades and their fabrication methods. To this end, the wood and the composite, as the two main materials used in blades, have been investigated. Then, the main methods of producing wooden and composite blades have been analyzed. Finally, the 3D printing method and polymer materials used in this technique have been introduced. The study shows that the fatigue parameter has an important role in determining the blade’s material and the fabrication method. Despite the environmental benefits of using wood, the complexity and the manufacturing costs prevent rapid and affordable production of wooden blades. On the other hand, the mass production of composite blades is more economical, although it has environmental impacts. Despite the fatigue issue of the 3D printed blades, the 3D printing method is a fast and relatively inexpensive technique for fabrication of small wind turbine models for wind tunnel tests.

کلیدواژه‌ها [English]

  • Small wind turbine
  • Blade
  • Composite
  • Wood
  • Fabrication method
  1. Lakshmi, G. S., Rathore, G. S., Sharma, R., Anand, A., Sharma, S., Hada, A. S., Energy statistics, (2017). Available at: https://smartnet.niua.org/sites/default/files/resources/energy_statistics_2017r.pdf.pdf
  2. Miller, L. M., Gans, F., Kleidon, A., "Estimating maximum global land surface wind power extractability and associated climatic consequences", Earth system dynamics, Vol. 2, No. 1, (2011), 1-12. https://doi.org/10.5194/esd-2-1-2011
  3. Appavou, F., Brown, A., Epp, B., Leidreiter, A., Lins, C., Murdock, H. E., Musolino, E., Petrichenko, K., Farrell, T. C., Krader, T. T., Tsakiris, A., Renewables 2017 global status report, REN21, Renewable Energy Policy Network for the 21st Century, REN21 Secretariate, Paris, (2017). Available at: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwih4vW36bDxAhV3_7sIHU_aAq0QFjADegQIAxAD&url=https%3A%2F%2Fwww.ren21.net%2Fwp-content%2Fuploads%2F2019%2F05%2FGSR2017_Full-Report_English.pdf&usg=AOvVaw0tL-6lnsf9PxZLiihDzPWB, (Accessed: 20 Dec. 2018).
  4. Hales, D., Renewables 2018-gobal status report, REN21, Renewable Energy Policy Network for the 21st Century, REN21 Secretariate, Paris, (2018). Available at: https://www.energia.org/renewables-2018-global-status-report-ren21/, (Accessed: 10 Jan. 2019).
  5. Small wind turbine market, Available at: https://www.mordorintelligence.com/industry- reports/small-wind-turbine-market
  6. Mohammadi, K., Mostafaeipour, A., Sabzpooshani, M., "Assessment of solar and wind energy potentials for three free economic and industrial zones of Iran", Energy, Vol. 67, (2014), 117-128. https://doi.org/10.1016/j.energy.2014.02.024
  7. Pourrajabian, A., Mirzaei, M., Ebrahimi, R., Wood, D., "Effect of air density on the performance of a small wind turbine blade: A case study in Iran", Journal of Wind Engineering and Industrial Aerodynamics, Vol. 126, (2014), 1-10. https://doi.org/10.1016/j.jweia.2014.01.001
  8. Pourrajabian, A., Ebrahimi, R., Mirzaei, M., "Applying micro scales of horizontal axis wind turbines for operation in low wind speed regions", Energy Conversion and Management, Vol. 87, (2014), 119-127. https://doi.org/10.1016/j.enconman.2014.07.003
  9. Giguère, P., Selig, M. S., "New airfoils for small horizontal axis wind turbines", Journal of Solar Energy Engineering, Vol. 120, No. 2, (1998), 108. https://doi.org/10.1115/1.2888052
  10. Pourrajabian, A., Afshar, P. A. N., Mirzaei, M., Ebrahimi, R., Wood, D. H., "Hollow blades for small wind turbines operating at high altitudes", Journal of Solar Energy Engineering, Vol. 138, No. 6, (2016). https://doi.org/10.1115/1.4034333
  11. Wood, D., Small Wind Turbines, Springer, London, (2012). https://doi.org/10.1007/978-1-84996-175-2
  12. Manwell, J. F., McGowan, J. G., Rogers, A. L., Wind Energy Explained: Theory, Design and Application, John Wiley & Sons, (2010). https://doi.org/10.1002/9781119994367
  13. Bechly, M. E., Clausen, P. D., "Some dynamic strain measurements from the blade of a small wind turbine", Wind Engineering, Vol. 23, No. 1, (1999), 15-22. Available at: https://www.jstor.org/stable/43749720
  14. Pourrajabian, A., Afshar, P. A. N., Ahmadizadeh, M., Wood, D., "Aero-structural design and optimization of a small wind turbine blade", Renewable Energy, Vol. 87, (2016), 837-848. https://doi.org/10.1016/j.renene.2015.09.002
  15. Shigley, J. E., Mischke, C. R., Mechanical Engineering Design, McGraw-Hill. Inc, Singapore, (1989). https://www.amazon.com/Mechanical-engineering-design-McGraw-Hill-mechanical/dp/007056888X
  16. Burton, T., Sharpe, D., Jenkins, N., Bossanyi, E., Wind Energy Handbook, John Wiley & Sons, (2001). https://books.google.com/books/about/Wind_Energy_Handbook.html?id=XFYrEAAAQBAJ&printsec=frontcover&source=kp_read_button
  17. Peterson, P., Clausen, P. D., "Timber for high efficiency small wind turbine blades", Wind Engineering, Vol. 28, No. 1, (2004), 87-96. https://doi.org/10.1260%2F0309524041210865
  18. Ross, R. J., Wood Handbook : Wood as an Engineering Material, Madison, (2010). https://doi.org/10.2737/FPL-GTR-113
  19. Astle, C., Burge, I., Chen, M., Herrler, T., Kwan, L., Zibin, N., Wood, D., "Timber for small wind turbine blades", Energy for Sustainable Development, Vol. 17, No. 6, (2013). https://doi.org/10.1016/j.esd.2013.03.001
  20. Gurit Holding, A. G., Guide to Composites, (2000). https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjZjrnm6LDxAhX1g_0HHVAmDz0QFjAAegQIBBAD&url=https%3A%2F%2Fwww.gurit.com%2F-%2Fmedia%2FGurit%2FDatasheets%2Fguide-to-composites.pdf&usg=AOvVaw0I4iUcAlXzhgQzgI24vcVw
  21. Guide to Composites, (2016). Available at: https://composites.ugent.be/home_made_composites/documentation/SP_Composites_Guide.pdf
  22. Kaw, A., Mechanics of Composite Mterials, CRC Press, (2005). https://books.google.com/books?id=MwHLBQAAQBAJ&printsec=frontcover&dq=Mechanics+of+Composite+Materials+kaw+A+2005&hl=en&sa=X&ved=2ahUKEwiQo_bW57DxAhU0hf0HHWFlAjEQ6AEwAXoECAoQAg#v=onepage&q=Mechanics%20of%20Composite%20Materials%20kaw%20A%202005&f=false
  23. Kaw, A., "Macromechanical analysis of a lamina Tsai‐Wu failure theory", (2015). https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjknvyB6LDxAhWWgP0HHfmOBioQFjAAegQIBBAD&url=http%3A%2F%2Fwww.eng.usf.edu%2F~kaw%2FcompositesOCW%2Fppts%2Fchapter2_revised%2FChapter2_8_6_tsaiwu%2520failure%2520theory.pdf&usg=AOvVaw1WxLpX6i6B4KT9ucVOPuRY
  24. Thomsen, O. T., "Sandwich materials for wind turbine blades-Present and future", Journal of Sandwich Structures and Materials, Vol. 11, No. 1, (2009), 7-26. https://doi.org/10.1177%2F1099636208099710
  25. Mandri, G., "Blade manufacturing of small wind turbine within the Moroccan context", (2016). https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjpjtWb6LDxAhWT_7sIHZA8BjwQFjAAegQIBBAD&url=https%3A%2F%2Fwww.researchgate.net%2Fprofile%2FLorenzo_Berto2%2Fpost%2FWhat_kind_of_materials_and_processes_are_involved_in_small_scale_VAWT_blades_manufacturing_How_to_give_an_early_estimate_of_the_costs%2Fattachment%2F5a267d27b53d2f0bba41c6e0%2FAS%253A568162263330816%25401512471847497%2Fdownload%2Fblade%2Bmanufacturing%2Bof%2Bsmall%2Bwind%2Bturbine%2Bwithin%2Bthe%2Bmoroccan%2Bcontext.pdf&usg=AOvVaw1Cz-Wwl6-WLbxr8V6dQaqh
  26. Gibson, I., Rosen, D., Stucker, B., Khorasani, M., Additive Manufacturing Technologies, Springer, New York, (2014). https://doi.org/10.1007/978-3-030-56127-7
  27. Bandyopadhyay, A., Bose, S., Additive Manufacturing, CRC Press, (2015). https://books.google.com/books?id=70W4DwAAQBAJ&dq=Additive+Manufacturing+Bandyopadhyay,+A.,+Bose,+S.,&hl=en&sa=X&ved=2ahUKEwjT-Jji5rDxAhVwgP0HHRMxA_4Q6AEwAHoECAgQAg
  28. Gebhardt, A., Hötter, J. S., Additive Manufacturing 3D Printing for Prototyping and Manufacturing, Carl Hanser Verlag, München, (2016). https://books.google.com/books/about/Additive_Manufacturing.html?id=nu-gDAAAQBAJ&source=kp_book_description
  29. Tymrak, B. M., Kreiger, M., Pearce, J. M., "Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions", Materials & Design, Vol. 58, No. 2, (2014), 242-246. https://doi.org/10.1016/j.matdes.2014.02.038
  30. Akour, S. N., Al-Heymari, M., Ahmed, T., Khalil, K. A., "Experimental and theoretical investigation of micro wind turbine for low wind speed regions", Renewable Energy, Vol. 116, (2018), 215-223. https://doi.org/10.1016/j.renene.2017.09.076
  31. Pourrajabian, A., Dehghan, M., Javed, A., Wood, D., "Choosing an appropriate timber for a small wind turbine blade: A comparative study". Renewable and Sustainable Energy Reviews, Vol. 100, (2019), 1-8. https://doi.org/10.1016/j.rser.2018.10.010