بررسی تأثیر اندرکنش خاک-سازه در پاسخ لرزه‏ای سیستم سازه‏ای قاب‌های خمشی بتن‌آرمه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی عمران، واحد ارومیه، دانشگاه آزاد اسلامی، ارومیه، ایران

2 دانشجوی دکتری، گروه مهندسی عمران، واحد ارومیه، دانشگاه آزاداسلامی، ارومیه، ایران

چکیده

اندرکنش خاک و سازه یکی از عامل‌های مهم و تاثیرگذار بر رفتار لرزه‌ای سازه‌ها به‌ویژه سازه‌های بتن‌آرمه است. در این تحقیق اثر اندرکنش خاک-سازه بر یک سازه 9 طبقه بتن‌آرمه با سیستم قاب خمشی که بر اساس الزامات لرزه‌ای با سطح خطر پایین طراحی‌شده است و برای تحلیل غیرخطی با نرم‌افزار اجزای محدود OpenSees در دو حالت مختلف با پایه صلب بدون در نظر گرفتن اندرکنش و با پایه منعطف با در نظر گرفتن اثر اندرکنش خاک-سازه مدل‌سازی و مورد ارزیابی قرارگرفته است. نتایج به‌دست‌آمده نشان می‌دهد که در اثر اندرکنش، برش پایه، برش درون طبقات و مقدار تغییرمکان نسبی کاهش‌یافته درحالی‌که دوره تناوب واقعی ساختمان و تغییرمکان مطلق طبقات افزایش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Effect of Soil Structural Interaction on Concrete Structural System

نویسندگان [English]

  • Ashkan KhodaBandehLou 1
  • Hadi Pouryan 2
1 Assistant Professor, Civil Engineering Department, Faculty of Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran
2 Ph.D. Candidate of Civil Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran
چکیده [English]

Soil-structure interaction is one of the important and influential factors on the seismic behavior of structures, especially reinforced concrete structures. In this study, the effect of soil-structure interaction on a 9-story reinforced concrete structure with a flexural frame system designed based on low-risk seismic requirements and for nonlinear analysis with OpenSees finite element software in two different modes with rigid base without considering the interaction And with a flexible base, the effect of soil-structure interaction has been modeled and evaluated. The results show that due to the interaction, the base shear, the shear within the floors and the amount of relative displacement are reduced, while the actual periodicity of the building and the absolute displacement of the floors is increased.

کلیدواژه‌ها [English]

  • Soil StructureInteraction
  • Dynamic Response
  • Base Shear
  • Fixed Base
  • FlexibleBase
[1]    Lou,  M. Wang, H. Chen, X. and Zhai, Y. “Structure–soil–structure interaction: Literature review.”  Soil Dynamics and Earthquake Engineering, vol. 31, pp. 1724-1731. (2011)
[2]    Warburton, G. B. Richardson, J. D. and Webster, J. J.. “Harmonic Response of Masses on an Elastic Half Space.” Journal of Engineering for Industry, vol. 94, pp. 193-200. (1972)
[3]    Kobori, T. Minal, R. and Kusakabe, K. “Dynamical Characteristics of Soil-Structure Cross-Interaction System”. (1973).
[4]    Lin, H. T. Roesset, J. and Tassoulas, J. “Dynamic interaction between adjacent foundations. Earthquake engineering & structural dynamics”, vol. 15, pp. 323-343. (1987)
[5]    Guan, F.and Novak,  M.. “Transient Response of Multiple Rigid Foundations on an Elastic”, Homogeneous HalfSpace. Journal of Applied Mechanics, vol. 61, pp. 656-663. (1994)
[6]    Guan,  F.and  Novak,  M.  “Transient  Response  of  an  Elastic  Homogeneous  Half-Space  to  Suddenly  Applied Rectangular Loading”. Journal of Applied Mechanics, vol. 61, pp. 256-263. (1994).
[7]    Qian, J. and. Beskos, D. E.. “Harmonic wave response of two 3-D rigid surface foundations,”  Soil Dynamics and Earthquake Engineering, vol. 15, pp. 95-110. (1996).
[8]    Ghandil, M.  and Behnamfar, F. “The near-field method for dynamic analysis of structures on soft soils including inelastic soil–structure interaction.”,  Soil Dynamics and Earthquake Engineering, vol. 75, pp. 1-17. (2015).
[9]    Ghandil,  M.  Behnamfar,  F.  and  Vafaeian,  M.  “Dynamic  responses  of  structure–soil–structure  systems  with  an extension of the equivalent linear soil modeling.”, Soil Dynamics and Earthquake Engineering, vol. 80, pp. 149-162. (2016).
[10] Clouteau, D. Broc, D. Devésa, G. Guyonvarh, V. and Massin, P. “Calculation methods of Structure–Soil–Structure Interaction (3SI) for embedded buildings: Application to NUPEC tests.” Soil Dynamics and Earthquake Engineering, vol. 32, pp. 129-142. (2012).
[11] Trombetta, N. W. Mason, H. B. Hutchinson, T. C. Zupan, J. D. Bray, J. D.  and Kutter, B. L. “Nonlinear Soil–Foundation–Structure  and  Structure–Soil–Structure  Interaction:  Centrifuge  Test  Observations”. Journal  of Geotechnical and Geoenvironmental Engineering, vol. 140. (2014).
[12] Trombetta, N. W. Mason, H. B. Hutchinson, T. C. Zupan, J. D. Bray, J. D. and Kutter, B. L., “Nonlinear Soil–Foundation–Structure  and  Structure–Soil–Structure  Interaction:  Engineering  Demands”,  Journal  of  Structural Engineering, vol. 141. (2015).
[13] Talebi, A., Jahangir, H., “Effect of Geometrical Parameters Evaluation on behavior of Knee Braces (In Persian)”, 4th International Conference on Advanced Technology in Civil Engineering, Architecture and Urban Planning, Tehran, Iran. (2017)
[14] Hosseini, M.H., Khatibinia, M., Jahangir, H., “Behavior Investigation of Perforated Buckling Restrained Brace (In Persian)” 3rd International Conference on Recent Innovations in Civil Engineering, Architecture & Urban Planning, Tehran, Iran. (2016)
[15] Khandan, B., Khatibinia, M., Jahangir, H., “Inclination Angle Optimization of Buckling Restrained Knee Braced Truss Moment Frame (In Persian)” 3rd International Conference on Recent Innovations in Civil Engineering, Architecture & Urban Planning, Tehran, Iran. (2016)
[16] Jahangir, H., Bagheri, M. and Delavari, S.M.J.,”Cyclic Behavior Assessment of Steel Bar Hysteretic Dampers Using Multiple Nonlinear Regression Approach.” Iranian Journal of Science and Technology, Transactions of Civil Engineering: 1-25. (2020) DOI: 10.1007/s40996-020-00497-4.
[17] Taherian, I., Ghalehnovi, M., Jahangir, H., “Analytical Study on Composite Steel Plate Walls Using a Modified Strip Model” 7th International Conference on Seismology and Earthquake Engineering, Tehran, Iran. (2015)
[18] Jahangir, H., Bagheri, M. “Evaluation of Seismic Response of Concrete Structures Reinforced by Shape Memory Alloys” International Journal of Engineering: 33(3): 410-418. (2020) DOI: 10.5829/IJE.2020.33.03C.05.
[19] Bagheri, M., Chahkandi, A., and Jahangir, H., "Seismic Reliability Analysis of RC Frames Rehabilitated by Glass Fiber-Reinforced Polymers" International Journal of Civil Engineering, 17: 1785–1797. (2019) DOI: 10.1007/s40999-019-00438-x.
[20] Jahangir, H., and Rezazadeh Eidgahee, D. “A New and Robust Hybrid Artificial Bee Colony Algorithm–ANN Model for FRP-Concrete Bond Strength Evaluation.” Composite Structures, (2020) DOI: 10.1016/j.compstruct.2020.113160.
[21] Santandrea, M., Imohamed Ali Omar Imohamed, I.A.O., Jahangir, H., Carloni, C., Mazzotti, C., De Miranda, S., Ubertini, F., Savoia, M., Casadei, P., “An Investigation of the Debonding Mechanism in Steel FRP and FRCM Concrete Joints” The New Boundaries of Structural Concrete, Capri Island, Italy. (2016)
[22] Jahangir, H., Esfahani, M. R. “Investigating loading rate and fibre densities influence on SRG-concrete bond behaviour” Steel and Composite Structures, 34(6): 877-889. (2020) DOI: 10.12989/scs.2020.34.6.877.
[23] Federal Emergency Managment Agency (FEMA).. FEMA P695, “Quantification of Building Seismic Performance Factors”. Washigton, DC, USA. (2009)
[24] Hassani, N. Bararnia, M. Amiri, G, “Effect of soil-structure interaction on inelastic displacement ratios of degrading structures”, Soil Dynamics and Earthquake Engineering, 104, 75-87. (2018)
[25] Karatzetzou, A.  Pitilakis, D, “Modification of Dynamic Foundation Response Due to Soil-Structure Interaction”. Journal of Earthquake Engineering, 22(5), 861-880. (2018).
[26] Zhang, C. Wolf, J. P, “Dynamic soil-structure interaction: current research in China and Switzerland “(Vol. 83): Elsevier. (1998).
[27] Pitilakis, K. Crowley, H. Kaynia, A. M. SYNER-G, “Typology definition and fragility functions for physical elements at seismic risk: buildings, lifelines, transportation networks and critical facilities”, (Vol. 27).  Springer Science & Business Media.   http://dx.doi.org/10.1007/978-94-007-7872-6. (2014).
[28] Clough, R. W, “On the importance of higher modes of vibration in the earthquake response of a tall building”, Bulletin of the Seismological Society of America, 45(4), 289-301. (1955).
[29] Bolisetti, C. Whittaker, A. S. Coleman, J. L, “Linear and nonlinear soil-structure interaction analysis of buildings and safety-related nuclear structures”, Soil Dynamics and Earthquake Engineering, 107, 218-233. (2018).
[30] Mylonakis, G. Gazetas, G, “Seismic soil-structure interaction: beneficial or detrimental”, Journal of Earthquake Engineering, 4(3), 277-301. (2000).
[31] Forcellini, D, “Seismic assessment of a benchmark based isolated ordinary building with soil structure interaction. Bulletin of Earthquake Engineering”, 16(5), 2021-2042. (2018).
[32] Stewart, J. P. Fenves, G. L. Seed, R. B, “Seismic soil-structure interaction in buildings. I: Analytical methods”, Journal of Geotechnical and Geoenvironmental Engineering, 125(1), 26-37. (1999). 
[33] Veletsos, A. S. Meek, J. W, “Dynamic behaviour of building‐foundation systems”, Earthquake Engineering & Structural Dynamics, 3(2), 121-138. (1974).
[34] Gazetas, G, “Formulas and charts for impedances of surface and embedded foundations”, Journal of geotechnical engineering, 117(9), 1363-1381. (1991).
[35] Ciampoli, M. Pinto, P. E, “Effects of soil-structure interaction on inelastic seismic response of bridge piers”, Journal of structural engineering, 121(5), 806-814. (1995).
[36] Rodriguez, M. E. Montes, R, “Seismic response and damage analysis of buildings supported on flexible soils”, Earthquake engineering & structural dynamics, 29(5), 647-665. (2000).
[37] Gazetas, G. Mylonakis, G, “Soil-structure interaction effects on elastic and inelastic structures”, Proceedings of the 4th international conference on recent advances in geotechnical earthquake engineering and soil dynamics. San Diego.CA. paper no. SOAP – 2. (2001).
[38] Avilés, J., & Pérez‐Rocha, L. E, “Soil–structure interaction in yielding systems”, Earthquake engineering & structural dynamics, 32(11), 1749-1771. (2003).
[39] Iida, M. “Three‐dimensional non‐linear soil–building interaction analysis in the lakebed zone of Mexico City during the hypothetical Guerrero earthquake”, Earthquake engineering & structural dynamics, 27(12), 1483-1502. (1998).
[40] Saez ER, “Dynamic nonlinear soil-structure interaction”, Ecole Centrale Paris. (2009).
[41] Sáez, E., Lopez-Caballero, F. Modaressi-Farahmand-Razavi, A. “Inelastic dynamic soil–structure interaction effects on moment-resisting frame buildings”, Engineering structures, 51, 166-1. (2013).
[42] Moghaddasi, M. Cubrinovski, M. Chase, J. G. Pampanin, S. Carr, A, “Probabilistic evaluation of soil–foundation–structure interaction effects on seismic structural response”, Earthquake Engineering & Structural Dynamics, 40(2), 135-154. (2011).
[43] National Institute of Building Sciences, ”Direct physical damage – general building stock. HAZUS-MH Technical manual”, Washington, D.C. Federal Emergency Management Agency. chapter 5. (2004).
[44] Sáez, E. Lopez-Caballero, F. Modaressi-Farahmand-Razavi, A, “Effect of the inelastic dynamic soil–structure interaction on the seismic vulnerability assessment”, Structural Safety, 33(1), 51-63. (2011).
[45]  Rajeev, P. Tesfamariam, S, “Seismic fragilities of non-ductile reinforced concrete frames with consideration of soil structure interaction”, Soil Dynamics and Earthquake Engineering, 40, 78-86. (2012).
[46] Pitilakis, K. Karapetrou, S. Fotopoulou, S, “Consideration of aging and SSI effects on seismic vulnerability assessment of RC buildings. Bulletin of Earthquake engineering”, 12(4), 1755-1776. (2014).
[47] Mahoutian, M, ”Soil structure interaction between two adjacent buildings under earthquake load”, American Journal of Engineering and Applied Sciences, 1(2), 121-125. (2008).
[48] Mazzoni, S. McKenna, F. Scott, M. H. Fenves, G. L, “The open system for earthquake engineering simulation (OpenSEES) user command-language manual”, Berkeley, California: Pacific Earthquake Engineering Research Center. (2006).
[49] Scott, B. Park, R.  Priestley, M, “Stress-strain behavior of concrete confined by overlapping hoops at low and high strain ratio Rates”, Doctoral Thesis, Lulea University of Technology, Lulea, Sweden. (1989).
[50] Karsan, I. D. Jirsa, J. O, “Behavior of concrete under compressive loadings”, Journal of the Structural Division. (1969).
[51] Lysmer, J. Kuhlemeyer, R. L, “Finite dynamic model for infinite media”. (1969).
[52] Kwok, A. O., Stewart, J. P., Hashash, Y. M., Matasovic, N., Pyke, R., Wang, Z., et al, “Use of exact solutions of wave propagation problems to guide implementation of nonlinear seismic ground response analysis procedures”, Journal of Geotechnical and Geoenvironmental Engineering, 133(11), 1385-1398. (2007).
[53] Ambraseys, N. N. Simpson, K. u. Bommer, J. J,” Prediction of horizontal response spectra in Europe”, Earthquake Engineering & Structural Dynamics, 25(4), 371-400. (1996).
[54] Vamvatsikos, D. Cornell, C. A, “Incremental dynamic analysis”, Earthquake Engineering & Structural Dynamics, 31(3), 491-514. (2002).
[55] Jahangir, H., Karamodin, A., “Structural Behavior Investigation Based on Adaptive Pushover Procedure” 10th International Congress on Civil Engineering, University of Tabriz, Tabriz, Iran. (2015)
[56] Vamvatsikos, D. Cornell, C. A, “Applied incremental dynamic analysis”, Earthquake Spectra, 20(2), 523-553. (2004).