Hurenko O. O., Drozdovska S. B.

INTESTINAL DYSBIOSIS AS A FACTOR IN THE DEVELOPMENT OF METABOLIC SYNDROME AND INSULIN RESISTANCE


About the author:

Hurenko O. O., Drozdovska S. B.

Heading:

LITERATURE REVIEWS

Type of article:

Scentific article

Annotation:

Abstract. Metabolic syndrome is a socially significant disease, the treatment of which still remains ineffective. Metabolic syndrome is a complex of interrelated cardiometabolic risk factors, which include obesity, dyslipidemia, hypertension and insulin resistance. Central obesity and insulin resistance are recognized as triggers in the manifestation of metabolic syndrome, the progression of which disrupts carbohydrate, purine and lipid metabolism. In insulin resistance, the biological response to exogenous and endogenous insulin is pathologically altered. At the molecular level, numerous defects in insulin signaling affect insulin resistance, reduce the number of insulin receptors, kinase receptor activity, phosphorylation of intracellular substrates, affect the translocation and activation of the glucose transporter. Recent data indicate that a qualitative change in the ratio of the normal species composition of intestinal bacteria (dysbiosis) causes metabolic diseases, and thus serves as a target for the fight against metabolic diseases. Biodiversity and the overall composition of the microbiome play a crucial role in maintaining normal homeostasis in the human body. Pathological conditions, which are characterized by metabolic syndrome, are accompanied by changes in the microbial composition of the intestine, dysfunction of the immune and neurohumoral systems of the human body. The data described in the review on the pathophysiological effect of intestinal microbiome on the development of metabolic syndrome and insulin resistance are confirmed by the results of many studies showing the involvement of microbiome through modulation of insulin signaling components, regulation of intestinal metabolites, production of short-chain fatty acids improving insulin sensitivity, increasing oxidative metabolism in white adipose tissue, liver and skeletal muscle and regulating the activity of N-oxide trimethylamine, which is directly related to the development of insulin resistance as a trigger factor in the manifestation of metabolic syndrome. The important role of intestinal microbiome transplantation is described, which has a significant effect on the suppression of chronic inflammation in the intestine with activation of the insulin signaling cascade, which allows us to conclude about the direct participation and influence of intestinal microbiocenosis diversity on the pathophysiology of metabolic syndrome and insulin resistance. Microorganisms of the intestinal microbiome, due to the modulation of cascade enzymatic reactions, pathophysiologically affect the progression and / or severity of complications of the metabolic syndrome, which is the subject of scientific interest today.

Tags:

microbiome, dysbiosis, metabolic syndrome, insulin resistance, obesity.

Bibliography:

  1. Dudchenko MA. Metabolichnyi syndrom abo metabolichna khvoroba? Aktualni problemy suchasnoi medytsyny. Visnyk ukrainskoi medychnoi stomatolohichnoi akademii. 2006;6(4):19–22. [in Ukrainian].
  2. Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep. 2018;20(2):12.
  3. Festi D, Schiumerini R, Eusebi LH, Marasco G, Taddia M, Colecchia A. Gut microbiota and metabolic syndrome. World Journal of Gastroenterol. 2014;20(43):79–94.
  4. Kassi E, Pervanidou P, Kaltsas G, Chrousos G. Metabolic syndrome: definitions and controversies. BMC Med. 2011;9(1):48.
  5. Balkau B, Charles MA. Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR). Diabet Med. 1999;16(5):442–3.
  6. Mychka VB, Chazova YE. Metabolycheskyi syndrom. Sistemnyye gipertenzii. 2009;1:50-53. [in Russian].
  7. Srikanthan K, Feyh A, Visweshwar H, Shapiro JI, Sodhi K. Systematic review of metabolic syndrome biomarkers: A panel for early detection, management, and risk stratification in the west Virginian population. Int J Med Sci. 2016;13(1):25–38.
  8. Chazova YE, Mychka VB. Metabolycheskyi syndrom. Kardyovaskuliarnaia terapyia y profylaktyka. 2003;3:32–38. [in Russian].
  9. Mychka VB, Bohyeva RM, Chazova YE. Sredstvo profylaktyky mnozhestvennykh serdechno-sosudystykh faktorov ryska metabolycheskoho syndroma. Klyn farmakol y ter. 2003;12(2):80–3. [in Russian].
  10. Pant S, Deshmukh A, Gurumurthy GS, Pothineni NV, Watts TE, Romeo F, et al. Inflammation and atherosclerosis-revisited. J Cardiovasc Pharmacol Ther. 2014;19(2):170–8.
  11. Rochlani Y, Pothineni NV, Kovelamudi S, Mehta JL. Metabolic syndrome: pathophysiology, management, and modulation by natural compounds. Ther Adv Cardiovasc Dis. 2017;11(8):215–25.
  12. Mytchenko EY. Evoliutsiia metabolichnoho syndromu. Zdorovia Ukrainy. 2006;22(1):22–4. [in Ukrainian].
  13. GBD 2015 Obesity Collaborators, Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377(1):13–27.
  14. Dabke K, Hendrick G, Devkota S. The gut microbiome and metabolic syndrome. J Clin Invest. 2019;129(10):4050–7.
  15. Molozhavaia OS, Yvakhniuk TV, Makarenko AN, Broz RV. Funktsyy kyshechnoi mykroflory orhanyzma v norme y pry patolohyy. Aktualni problemy suchasnoi medytsyny: Visnyk ukrainskoi medychnoi stomatolohichnoi akademii. 2016;16(4):333-340. [in Ukrainian].
  16. Heianza Y, Sun D, Li X, DiDonato JA, Bray GA, Sacks FM, et al. Gut microbiota metabolites, amino acid metabolites and improvements in insulin sensitivity and glucose metabolism: the POUNDS Lost trial. Gut. 2019;68(2):263–70.
  17. Kotrova AD, Shyshkyn AN, Semenova OY, Slepykh LA. Rol kyshechnoi mykrobyoty v razvytyy metabolycheskoho syndroma. Eksperimental’naya i klinicheskaya gastroenterologiya. 2019;12(172):101-108. [in Russian].
  18. Boitsov SA, Strazhesko YD, Akasheva DU, Dudynskaia EN, Kruhlykova AS, Tkacheva ON. Ynsulynorezystentnost: blaho yly zlo? Mekhanyzmy razvytyia y sviaz s vozrast-assotsyyrovannymy yzmenenyiamy sosudov. Kardyovaskuliarnaia terapyia y profylaktyka. 2013;12(4):91-97. [in Russian].
  19. Hordiunyna SV. Ynsulynorezystentnost y rehuliatsyia metabolyzma. Problemy endokrynolohyy. 2012;58(3):31–4. [in Russian].
  20. Abusuev SA. Dedov YY, Shestakova MV. Dyabetycheskaia nefropatyia Moskva: «Unyversum Pablyshynh»; 2000. 240 s. [in Russian].
  21. Sesti G, Federici M, Lauro D, Sbraccia P, Lauro R. Molecular mechanism of insulin resistance in type 2 diabetes mellitus: role of the insulin receptor variant forms. Diabetes Metab Res Rev. 2001;17(5):363–73.
  22. Tolehenkyzy A, Kachyeva ZS, Salymbekova SK, Bysmyldyna HS, Akhmetova ZHN. Molekuliarnye mekhanyzmy razvytyia ynsulynorezystentnosty y sakharnoho dyabeta 2-ho typa. Vestnyk Kazakhskoho Natsyonalnoho medytsynskoho unyversyteta. 2018;2:236- 239. [in Russian]
  23. Lillioja S, Mott DM, Spraul M, Ferraro R, Foley JE, Ravussin E, et al. Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians. N Engl J Med. 1993;329(27):1988–92.
  24. LeRoith D. Beta-cell dysfunction and insulin resistance in type 2 diabetes: role of metabolic and genetic abnormalities. Am J Med. 2002;113(6):3-11.
  25. Chylikova J, Dvorackova J, Tauber Z, Kamarad V. M1/M2 macrophage polarization in human obese adipose tissue. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2018;162(2):79–82.
  26. Tsigos C, Kyrou I, Chala E, Tsapogas P, Stavridis JC, Raptis SA, et al. Circulating tumor necrosis factor alpha concentrations are higher in abdominal versus peripheral obesity. Metabolism. 1999;48(10):1332–5.
  27. Hu M, Yu Z, Luo D, Zhang H, Li J, Liang F, et al. Association between -174G>C polymorphism in the IL-6 promoter region and the risk of obesity: A meta-analysis: A meta-analysis. Medicine (Baltimore). 2018;97(33):117-73.
  28. Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab. 1998;83(3):847–50.
  29. Bastard JP, Jardel C, Bruckert E, Blondy P, Capeau J, Laville M, et al. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol Metab. 2000;85(9):3338–42.
  30. Lazebnyk LB, Konev YV. Mykrobyota, dysbyoz y vozrast-zavysymye zabolevaniya. Klynycheskaya herontolohyia. 2020;1.2:43-50. [in Russian].
  31. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29):8787–803.
  32. Swidsinski A, Loening-Baucke V, Lochs H, Hale L-P. Spatial organization of bacterial flora in normal and inflamed intestine: a fluorescence in situ hybridization study in mice. World J Gastroenterol. 2005;11(8):1131–40.
  33. Hollister EB, Gao C, Versalovic J. Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology. 2014;146(6):1449–58.
  34. Shyrobokov VP, Yankovskyi DS, Dyment HS. Mikrobna ekolohiia liudyny. 2-he vydannya. Kyyiv:TOV «Chervona Ruta»; 2011. 312 s. [in Ukrainian].
  35. Manichanh C, Borruel N, Casellas F, Guarner F. The gut microbiota in IBD. Nat Rev Gastroenterol Hepatol. 2012;9(10):599–608.
  36. Abdugaffarov SO, Rakhimzhonov SS, Bobokulov AU, Akromov AR. Rol mykroflory v zhyznedeiatelnosty cheloveka. Medytsyna Sotsyolohyia Fylosofyia Prykladnye yssledovanyia. 2020;4:54-57. [in Russian].
  37. Bassis C, Young V, Schmidt T. The Human Microbiota. USA: John Wiley & Sons, Inc.; 2013. Chapter 2, Methods for characterizing microbial communities associated with the human body; p. 51–74.
  38. Morgan XC, Huttenhower C. Meta’omic analytic techniques for studying the intestinal microbiome. Gastroenterology. 2014;146(6): 1437-48.
  39. Heianza Y, Ma W, Manson JE, Rexrode KM, Qi L. Gut Microbiota metabolites and risk of major adverse cardiovascular disease events and death: A systematic review and meta-analysis of prospective studies. J Am Heart Assoc. 2017;6(7):e004947.
  40. Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JFWM, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913-6.
  41. Yang Q, Vijayakumar A, Kahn BB. Metabolites as regulators of insulin sensitivity and metabolism. Nat Rev Mol Cell Biol. 2018;19(10): 654–72.
  42. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest.2006;444(7122):1027–30.
  43. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. 2013;504(7480):451–5.
  44. Al-Lahham S, Roelofsen H, Rezaee F, Weening D, Hoek A, Vonk R, et al. Propionic acid affects immune status and metabolism in adipose tissue from overweight subjects: propionic acid affects immune status in adipose tissUE. Eur J Clin Invest. 2012;42(4):357–64.
  45. Merlotti C, Morabito A, Ceriani V, Pontiroli AE. Prevention of type 2 diabetes in obese at-risk subjects: a systematic review and metaanalysis. Acta Diabetol. 2014;51(5):853–63.
  46. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85.
  47. Gomes AC, Hoffmann C, Mota JF. The human gut microbiota: Metabolism and perspective in obesity. Gut Microbes. 2018;9(4):308-325
  48. Parnell JA, Reimer RA. Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am J Clin Nutr. 2009;89(6):1751–9.
  49. Gustafsson BE, Midtvedt T, Norman A. Isolated fecal microorganisms capable of 7-alpha-dehydroxylating bile acids. Journal of Exp Med. 1966;123(2):413–32.
  50. Iguchi Y, Yamaguchi M, Sato H, Kihira K, Nishimaki-Mogami T, Une M. Bile alcohols function as the ligands of membrane-type bile acidactivated G protein-coupled receptor. J Lipid Res. 2010;51(6):1432–41.
  51. Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS, et al. Inhibition of food intake in obese subjects by peptide YY3- 36. N Engl J Med. 2003;349(10):941–8.

Publication of the article:

«Bulletin of problems biology and medicine» Issue 1 (159), 2021 year, 257-264 pages, index UDK 796;797;798;799;796.015.62

DOI: