Nanomateriales para el transporte y liberación controlada de ciprofloxacino en aplicaciones biomédicas

Autores/as

  • Cinthia Berenice Garcia Reyes Universidad Autonoma de Nuevo Leon
  • Ventura Castillo Ramos Universidad Autonoma de Nuevo Leon
  • Guillermo Mangas Garcia Universidad Autonoma de Nuevo Leon
  • Ricardo Navarrete Casas Universidad Autonoma de Nuevo Leon
  • Manuel Sanchez Polo Universidad Autonoma de Nuevo Leon

DOI:

https://doi.org/10.29105/qh11.02-289

Palabras clave:

ciprofloxacino, nanomateriales, liberación controlada, MOFs, biomedicina

Resumen

urante los últimos 50 años se ha desarrollado una gran cantidad de sistemas y tecnologías de liberación controlada de medicamentos para el tratamiento de un amplio espectro de enfermedades. El objetivo es, de alguna manera, potenciar la eficacia de los fármacos administrados, especialmente de aquellos poco solubles en agua, y lograr una administración localizada evitando sobredosis que puedan provocar un desarrollo de la resistencia a dichos tratamientos. Los materiales
portadores de nueva generación deben ser capaces de sobrepasar las barreras fisicoquímicas y biológicas del huésped para que sean efectivos. En este marco, la presente revisión bibliográfica tiene como objetivo introducir los nanomateriales más atractivos que se han estado desarrollado en los últimos años como portadores del antibiótico ciprofloxacino, altamente utilizado para el tratamiento de un amplio rango de infecciones y que presenta una baja solubilidad en medios acuosos, dificultando por tanto su permeabilidad celular. Los Metal Organic Frameworks (MOFSs), nanomateriales de sílice con
diversas morfologías, hidrogeles y otros nanomateriales de interés han sido recogidos en el presente trabajo como
portadores para la liberación controlada de ciprofloxacino, teniendo aplicaciones biomédicas potenciales tan diversas como en el tratamiento de infecciones óseas y dentales, como apósitos para la cura de heridas o incluso en tratamientos para el sistema tracto-intestinal y urinario.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

-[1] JF. Beledo, AM. Martínez, and J. Armijo,“Farmacología humana - 6th Edition,” 2013. https://www.elsevier.com/books/farmacologiahumana/florez-beledo/978-84-458-2316-3 (accessed Jan. 20, 2022).

-[2] D. K. Terp and M. J. Rybak, “Ciprofloxacin,” http://dx.doi.org/10.1177/1060028087021007-801, vol. 21, no. 7-8, pp. 568-574, Feb. 2017, doi: 10.1177/1060028087021007-801.

-[3] GF. Zhang, X. Liu, S. Zhang, B. Pan, and ML. Liu, “Ciprofloxacin derivatives and their antibacterial activities,” European journal of medicinal chemistry, vol. 146, pp. 599-612, Feb. 2018, doi: 10.1016/J.EJMECH.2018.01.078.

-[4] World Health Organization, “World Health Organization Model List of Essential Medicines — 22nd List,” Geneva, 2021. ClinCal LLC, “Ciprofloxacin, ClinCalc DrugStats Database, Version 2021.10,” 2021. https://clincalc.com/DrugStats/Drugs/Ciprofloxacin (accessed Jan. 22, 2022).

-[6] T. Thai, B. H. Salisbury, and P. M. Zito, “Ciprofloxacin,” StatPearls, Nov. 2021, Accessed: Jan. 20, 2022. [Online]. Available: https: //www.ncbi.nlm.nih.gov/books/NBK535454/

-[7] JA. Balfour and D. Faulds, “Oral ciprofloxacin: a pharmacoeconomic evaluation of its use in the treatment of serious infections,” PharmacoEconomics, vol. 3, no. 5, pp. 398-421, 1993, doi: 10.2165/00019053-199303050-00007.

-[8] R. Fass, “Ciprofloxacin. Best use of this new broad spectrum antibiotic,” Postgraduate medicine, vol. 87, no. 8, 1990, doi: 10.1080/00325481.1990.11704677.

-[9] T. Bergan, A. Dalhoff and R. Rohwedder,“Pharmacokinetics of ciprofloxacin,” Infection 1988 16:1, vol. 16, no. 1, pp. S3-S13, Jan. 1988, doi: 10.1007/BF01650500.

-[10] D. M. Campoli-Richards, J. P. Monk, A. Price, P. Benfield, P. A. Todd, and A. Ward, “Ciprofloxacin,” Drugs, vol. 35, no. 4, pp. 373-447, Apr. 1988, doi: 10.2165/00003495-198835040-00003.

-[11] A. Rehman, WM. Patrick, and IL. Lamon, “Mechanisms of ciprofloxacin resistance in Pseudomonas aeruginosa: new approaches to an old problem,” Journal of medical microbiology, vol. 68, no. 1, pp. 1-10, Jan. 2019, doi: 10.1099/JMM.0.000873.

-¨[12] CC. Sanders, “Ciprofloxacin: in vitro activity, mechanism of action, and resistance,” Reviews of infectious diseases, vol. 10, no. 3, pp. 516-527, 1988, doi: 10.1093/CLINIDS/10.3.516.

-[13] CJ. Thomson, “The global epidemiology of resistance to ciprofloxacin and the changing nature of antibiotic resistance: a 10 year perspective,” The Journal of antimicrobial chemotherapy, vol. 43 Suppl A, no. SUPPL. A, pp. 31-40, 1999, doi: 10.1093/JAC/43.SUPPL_1.31.

-[14] M. LeBel, “Ciprofloxacin: chemistry, mechanism of action, resistance, antimicrobial spectrum, pharmacokinetics, clinical trials, and adverse reactions,” Pharmacotherapy, vol. 8, no. 1, pp. 3-30, 1988, doi: 10.1002/3.1875 9114.1988.TB04058.X.

-[15] P. Schacht, G. Arcieri, and R. Hullmamn, “Safety of oral ciprofloxacin. An update based on clinical trial results,” The American Journal of Medicine, vol. 87, no. 5 SUPPL. 1, Nov. 1989, doi: 10.1016/0002- 9343(89)90033-8.

-[16] GM. Arcieri et al., “Safety of intravenous ciprofloxacin. A review,” The American journal of medicine, vol. 87, no. 5A, Nov. 1989, doi: 10.1016/0002-9343(89)90032-6.

-[17] D. Balarak, F. K. Mostafapour, and H. Azarpira, “Adsorption Kineticss and Equilibrium of Ciprofloxacin from Aqueous Solutions Using Corylus avellana (Hazelnut) Activated Carbon,” Journal of Pharmaceutical Research International, vol. 13, no. 3, pp. 1-14, Sep. 2016, doi: 10.9734/BJPR/2016/29357.

-[18] A. Abioye, A. Sanyaolu, P. Dudzinska, AA. Adepoju-Bello, and HAB. Coker, “Chitosan induced Synergy for Extended Antimicrobial Potency and Enhanced In Vitro Drug Release of Free Base Ciprofloxacin Nanoplexes,” Pharmaceutical nanotechnology, vol. 8, no. 1, pp. 33-53, Nov. 2020, doi: 10.2174/2211738507666191021102256.

-[19] T. Takagi, C. Ramachandran, M. Bermejo, S.Yamashita, L. X. Yu, and G. L. Amidon, “A Provisional Biopharmaceutical Classification of the Top 200 Oral Drug Products in the United States, Great Britain, Spain, and Japan,” 2006, doi: 10.1021/mp0600182.

-[20] Y. Kawabata, K. Wada, M. Manabu Nakatani, S. Yamada, and S. Onoue, “Formulation design for poorly water-soluble drugs based on

biopharmaceutics classification system: basic approaches and practical applications,” International journal of pharmaceutics, vol. 420, no. 1, pp. 1-10, Nov. 2011, doi: 10.1016/J.IJPHARM.2011.08.032.

-¨[21] Dajun D. Sun and Ping ILe, “Probing the mechanisms of drug release from amorphous solid dispersions in medium-soluble and medium insoluble carriers,” Journal of controlled release: official journal of the Controlled Release Society, vol. 211, pp. 85-93, Jun. 2015, doi: 10.1016/3J.JCONREL.2015.06.004.

-[22] DA. Talan, KG. Naber, J. Palou, and D. Elkharrat, “Extended-release ciprofloxacin (Cipro XR) for treatment of urinary tract infections.,” International Journal of Antimicrobial Agents, vol. 23 Suppl 1, no. SUPPL. 1, . S54-66, Mar. 2004, doi:10.1016/3J.IJANTIMICAG.2003.12.005.

-¨[23] M. N. Reddy, K. K. Cheralathan, and S. Sasikumar, “In vitro bioactivity and drug release kinetics studies of mesoporous silica-biopolymer composites,” Journal of Porous Materials, vol. 6, no. 22, pp. 1465— 1472, Dec. 2015, doi: 10.1007/S10934-015-0027-5.

-[24] Y. H. Yun, B. K. Lee, and K. Park, “Controlled Drug Delivery: Historical perspective for the next generation,” Journal of controlled release: official journal of the Controlled Release Society, vol. 219, p. 2, Dec. 2015, doi: 10.1016/J.ICONREL.2015.10.005.

-[25] C. B. García-Reyes, J. J. Salazar-Rábago, M.Sánchez-Polo, M. Loredo-Cancino, and R. Leyva Ramos, “Ciprofloxacin, ranitidine, and chlorphenamine removal from aqueous solution by adsorption. Mechanistic and regeneration analysis,” Environmental Technology and Innovation, vol. 24, Nov. 2021, doi: 10.1016/j.eti.2021.102060.

-[26] Yechezkel Barenholz, “DoxilY — The first FDA approved nano-drug: Lessons learned,” Journal of Controlled Release, vol. 160, no. 2, pp. 117-134, Jun. 2012, doi: 10.1016/J.JCONREL.2012.03.020.

-[27] K. Yang, Q. Sun, F. Xue, and D. Lin, “Adsorption of volatile organic compounds by metal-organic frameworks MIL-101: Influence of molecular size and shape,” Journal of Hazardous Materials, vol. 195, . 124-131, Nov. 2011, doi:10.1016/3. JHAZMAT.2011.08.020.

-[28] V. C. Ramos, W. Han, X. Zhang, S. Zhang, and K. L. Yeung, “Supported ionic liquids for air purification,” Current Opinion in Green and Sustainable Chemistry, vol. 25. Elsevier B.V., Oct. 01, 2020. doi: 10.1016/j.cogsc.2020.100391.

-[29] CY. Sun, C. Qin, XL. Wang, and ZM. Su, “Metal organic frameworks as potential drug delivery systems,” Expert opinion on drug delivery, vol. 10, no. 1, . 89-101, Jan. 2013, doi: 10.1517/17425247.2013.741583.

-[30] M. N. Hasan, A. Bera, T. K. Maji, and S. K. Pal, “Sensitization of nontoxic MOF for their potential drug delivery application against microbial infection,” Inorganica Chimica Acta, vol. 523, p. 120381, Aug. 2021, doi: 10.1016/3.1CA.2021.120381.

-[31] H. Nabipour, M. H. Sadr, and G. R. Bardajee, “Synthesis and characterization of nanoscale zeolitic imidazolate frameworks with ciprofloxacin and their applications as antimicrobial agents,” New Journal of Chemistry, vol. 41, no. 15, pp. 7364-7370, Jul. 2017, doi: 10.1039/C7NJO0606C.

-¨[32] M. Nasrabadi, M. A. Ghasemzadeh, and M. R. Z. Monfared, “The preparation and characterization of UiO-66 metal—organic frameworks for the delivery of the drug ciprofloxacin and an evaluation of their antibacterial activities,” New Journal of Chemistry, vol. 43, no. 40, pp. 16033-16040, Oct. 2019, doi: 10.1039/C9NJ03216A.

-[33] M. Esfahanian, MA. Ghasemzadeh, and SMH. Razavian, “Synthesis, identification and application of the novel metal-organic framework Fe 3 O AaPAA(OZIF-8 for the drug delivery of ciprofloxacin and investigation of antibacterial activity,” Artificial cells, nanomedicine, and biotechnology, vol. 47, no. 1, pp. 2024-2030, Dec. 2019, doi: 10.1080/21691401.2019.1617729.

-[34]. S. Sohrabnezhad, Z. Poursafar, and A. Asadollahi, “Synthesis of novel core(Ashell of MgAl layered double hydroxide (A porous magnetic shell (MgAl LDHGAPMN) as carrier for ciprofloxacin drug,” Applied Clay Science, vol. 190, p. 105586, Jun. 2020, do 10.1016/J.CLAY.2020.105586.

-[35]. M. D. Olawale, A. C. Tella, J. A. Obaleye, and J. S. Olatunji, “Synthesis, characterization and crystal structure of a copper-glutamate metal organic framework (MOF) and its adsorptive removal of ciprofloxacin drug from aqueous solution,” New Journal of Chemistry, vol. 44, no. 10, pp. 3961-3969, Mar. 2020, doi: 10.1039/D0NJ00515K.

-[36]. P. Singh, S. Srivastava, and S. K. Singh, “Nanosilica: Recent Progress in Synthesis, Functionalization, Biocompatibility, and Biomedical Applications,”ACS Biomaterials Science $ Engineering, vol. 5, no. 10, pp. 4882-4898, Oct. 2019, doi: 10.1021/ACSBIOMATERIALS.9B00464.

-[37].P. Araichimani et al. “Amorphous silica nanoparticles derived from biowaste via microwave combustion for drug delivery,” International Journal of Applied Ceramic Technology, vol. 18, no. 3, pp. 583-589, May 2021, doi: 10.1111/1JAC.13693.

-[38]. E. A. Hussein and S. H. Kareem, “Baghdad Science Journal Mesoporous Silica Nanoparticles as a System for Ciprofloxacin Drug Delivery; Kinetic of Adsorption and Releasing,” 2021, doi: 10.21123/b5.2021.18.2.0357.

-[39]. S. Belbekhouche et al., “Fabrication of large pore mesoporous silica microspheres by salt-assisted spray-drying method for enhanced antibacterial activity and pancreatic cancer treatment,” International Journal of Pharmaceutics, vol. 590, p.119930, Nov. 2020, doi: 10.1016/J.IJPHARM.2020.119930.

-[40]. I. Gessner et al., “Hollow silica capsules for amphiphilic transport and sustained delivery of antibiotic and anticancer drugs,” RSC Advances, vol. 8, no. 44, pp. 24883-24892, Jul. 2018, doi: 10.1039/C8RA03716G.

-[41]. Y. Zhang et al., “Multifunctional Zn doped hollow mesoporous silica/polycaprolactone electrospun membranes with enhanced hair follicle regeneration and antibacterial activity for wound healing,”Nanoscale, vol. 11, no. 13, pp. 6315-6333, Mar. 2019, doi: 10.1039/C8NR09818B.

-[42]. S. Hashemikia, F. Farhangpazhouh, M. Parsa, M.Hasan, A. Hassanzadeh, and M. Hamidi, “Fabrication of ciprofloxacin-loaded chitosan/polyethylene oxide/silica nanofibers for wound dressing application: In vitro and in vivo evaluations,”International Journal of Pharmaceutics, vol. 597, p. 120313, Mar. 2021, doi: 10.1016/J IJPHARM.2021.120313.

-[43]. A. M. Hezma, T. A. Elkhooly, and G. S. El-Bahy,“Fabrication and characterization of bioactive chitosan microspheres incorporated with mesoporous silica nanoparticles for biomedical applications,”Journal of Porous Materials 2019 27:2, vol. 27, no. 2, pp. 555-562, Dec. 2019, doi: 10.1007/S10934-019-00837-4.

-[44]. Z. Sobhani, SM. Samani, H. Montaseri, and E. Khezri, “Nanoparticles of Chitosan Loaded Ciprofloxacin: Fabrication and Antimicrobial Activity,” Advanced pharmaceutical bulletin, vol. 7, no. 3, . 427-432, 2017, doi: 10.15171/APB.2017.051.

-[45]. A. Korzeniowska, W. Strzempek, W. Makowski, E Menaszek, W. J. Roth, and B. Gil, “Incorporation and release of a model drug, ciprofloxacin, from non modified SBA-15 molecular sieves with different pore sizes,” Microporous and Mesoporous Materials, vol. 294, p. 109903, Mar. 2020, doi: 10.1016/JMICROMESO.2019.109903.

-[46]. W. R. D. N. Sousa et al., “Ciprofloxacin Adsorption on ZnO Supported on SBA-15,” Water, Air, £ Soil Pollution 2018 229:4, vol. 229, no. 4, pp. 1-12, Mar. 2018, doi: 10.1007/511270-018-3778-1.

-[47]. E.-S. Ghaith and S. Comnolly, “Evaluation of mesoporous SBA-15 for the controlled delivery of ciprofloxacin hydrochloride,” http://dx.doi.org/10.1680/bbn.14.00002, vol. 3, no. 4, pp. 199-207, May 2015, doi: 10.1680/BBN.14.00002.

-[48]. G. F. Andrade et al., “Mesoporous silica SBA 16/hydroxyapatite-based composite for ciprofloxacin delivery to bacterial bone infection,” Journal of Sol Gel Science and Technology 2017 85:2, vol. 85, no. 2, pp. 369-381, Dec. 2017, doi: 10.1007/S510971-017- 4557-Y.

-[49]. Y. Zhang, C. Huang, and J. Chang, “Ca-Doped mesoporous SiO2/dental resin composites with enhanced mechanical properties, bioactivity and antibacterial properties,” Journal of Materials Chemistry B, vol. 6, no. 3, pp. 477-486, Jan. 2018, doi: 10.1039/C7TB02864D.

-[50]. R. Lensing et al., “Efficacy of nanoporous silica coatings on middle ear prostheses as a delivery system for antibiotics: an animal study in rabbits,” Acta biomaterialia, vol. 9, no. 1, pp. 4815-4825, 2013, doi: 10.1016/3. ACTBIO.2012.08.016.

-[51]. N. Ehlert, P. P. Mueller, M. Stieve, T. Lenarz, and P. Behrens, “Mesoporous silica films as a novel biomaterial: applications in the middle ear,” Chemical Society Reviews, vol. 42, no. 9, pp. 3847-3861, Apr. 2013, doi: 10.1039/C3C835359A.

-[52]. N. Ehlert et al., “Mesoporous silica coatings for controlled release of the antibiotic ciprofloxacin from tmplants, ” Journal of Materials Chemistry, vol. 21, 3, pp. 752-760, Dec. 2010, doi: 10. 1039/C0JM01487G.

-[53]. A. Skwira, A. Szewczyk, and M. Prokopowicz, “The Effect of Polydimethylsiloxane-Ethylcellulose Coating Blends on the Surface Characterization and Drug Release of Ciprofloxacin-Loaded Mesoporous Silica,” Polymers, vol. 11, no. 9, 2019, doi: 10.3390/POLYM1 1091450.

-[54]. X. J. Ji et al., “Corrosion resistance and tunable release of ciprofloxacin-loaded multilayers on magnesium alloy: Effects of SiO2 nanoparticles,” Applied Surface Science, vol. 508, p. 145240, Apr. 2020, doi: 10.1016/3.APSUSC.2019.145240.

-[55]. A. Skwira et al., “Silica-Polymer Composites as the Novel Antibiotic Delivery Systems for Bone Tissue Infection,” Pharmaceutics 2020, Vol. 12, Page 28, vol. 12, no. 1, p. 28, Dec. 2019, doi: 10.3390/PHARMACEUTICS 12010028.

-[56]. M. Bahram, N. Mohseni, and M. Moghtader, “An Introduction to Hydrogels and Some Recent Applications,” in Emerging Concepts in Analysis and Applications of Hydrogels, IntechOpen, 2016. doi: 10.5772/64301.

-[57]. A. K. Gaharwar, N. A. Peppas, and A. Khademhosseini, “Nanocomposite hydrogels for biomedical applications,” Biotechnology and Bioengineering, vol. 111, no. 3, pp. 441-453, Mar. 2014, doi: 10.1002/BIT.25160.

-[58]. R. Dimatteo, N. J. Darling, and T. Segura, “In situ forming injectable hydrogels for drug delivery and wound repair,” Advanced Drug Delivery Reviews, vol. 127, pp. 167-184, Mar. 2018, doi: 10.1016/3.ADDR.2018.03.007.

-[59]. A. S. Hoffman, “Hydrogels for biomedical applications,” Advanced Drug Delivery Reviews, vol. 64, no. SUPPL., pp. 18-23, Dec. 2012, doi: 10.1016/3.ADDR.2012.09.010.

-[60]. M. E. Wechsler, R. E. Stephenson, A. C. Murphy, H. F. Oldenkamp, A. Singh, and N. A. Peppas, “Engineered microscale hydrogels for drug delivery, cell therapy, and sequencing,” Biomedical Microdevices 2019 21:2, vol. 21, no. 2, pp. 1-15, Mar. 2019, doi: 10.1007/S10544-019-0358-0.

-[61]. X. X. Li et al., “Synthesis of attapulgite/N isopropylacrylamide and its use in drug release,” Materials Science and Engineering C, vol. 45, pp. 170-175, Dec. 2014, doi: 10.1016/j.msec.2014.08.056.

-[62]. Z. H. Ghauri et al., “Development and evaluation of pH-sensitive biodegradable ternary blended hydrogel films (chitosan/guar gum/PVP) for drug delivery application,” Scientific Reports, vol. 11, no. 1, p. 21255, Dec. 2021, doi: 10.1038/541598-021-00452-x.

-[63]. B. Singh and A. Kumar, “Network formation of Moringa oleifera gum by radiation induced crosslinking: Evaluation of drug delivery, network parameters and biomedical properties,” International Journal of Biological Macromolecules, vol. 108, pp. 477-488, Mar. 2018, dol: 10.1016/].ijbiomac.2017.12.041.

-[64], K. Prusty, A. Biswal, S. B. Biswal, and S. K. Swain, “Synthesis of soy protein/polyacrylamide nanocomposite hydrogels for delivery of ciprofloxacin drug,” Materials Chemistry and Physics, vol. 234, pp. 378-389, Aug. 2019, doi: 10,1016/.matchemphys.2019.05.038,

-[65].B. Singh, J. S. Kanwar, and P. Kumari, “Modification of Dietary Fiber Psyllium with Poly(vinyl pyrrolidone) through Network Formation for Use in Slow Drug Delivery Application,” Polymer Science - Series B, vol. 60, no. 3, pp. 331-348, May 2018, doi: 10.1134/S5156009041803017X.

-[66]. B. Singh, L. Varshney, and V. Sharma, “Design of sterile mucoadhesive hydrogels for use in drug delivery: Effect of radiation on network structure,” Colloids and Surfaces B: Biointerfaces, vol. 121, pp. 230-237, Sep. 2014, doi: 10.1016/¡.colsurfb.2014.06.020.

-[67]. J. R. Padhi, D. Nayak, A. Nanda, P. R. Rauta, S. Ashe, and B. Nayak, “Development of highly biocompatible Gelatin $ ¡-Carrageenan based composite hydrogels: In depth physiochemical analysis for biomedical applications,” Carbohydrate Polymers, vol. 153, pp. 292-301, Nov. 2016, doi: 10.1016/;.carbpol.2016.07.098.

-[68]. B. Singh, A. Dhiman, Rajneesh, and A. Kumar, “Slow release of ciprofloxacin from fB- cyclodextrin containing drug delivery system through network formation and supramolecular interactions,” International Journal of Biological Macromolecules, vol. 92, pp. 390-400, Nov. 2016, dol: 10.1016/].ijbiomac.2016.07.060.

-[69]. S. K. Ghosh et al., “Semi-interpenetrating hydrogels from carboxymethyl guar gum and gelatin for ciprofloxacin sustained release,” International Journal of Biological Macromolecules, vol. 120, pp. 1823— 1833, Dec. 2018, doi: 10.1016/].ijbiomac.2018.09.212.

-[70]. R. Ebrahimi and M. Salavaty, “Controlled drug delivery of ciprofloxacin from ultrasonic hydrogel,” e-Polymers, vol. 18, no. 2, pp. 187-195, Feb. 2018, doi: 10.1515/epoly-2017-0123.

-[71]. R. Prasad Dewangan, S. Kumari, A. Kumar Mahto, A. Jain, and S. Pasha, “Self assembly and hydrogelation of N-terminal modified tetrapeptide for sustained release and synergistic action of antibacterial drugs against methicillin resistant S. aureus,” Bioorganic Chemistry, vol. 102, p. 104052, Sep. 2020, doi: 10.1016/;.bioorg.2020.104052.

-[72]. M. C. García et al., “A novel gel based on an ¡onic complex from a dendronized polymer and ciprofloxacin: Evaluation of its use for controlled topical drug release,” Materials Science and Engineering C, vol. 69, pp. 236-246, Dec. 2016, doi: 10.1016/j.msec.2016.06.071.

-[73].S. L. Steffensen et al. “Soft hydrogels interpenetrating silicone—A polymer network for drug-releasing medical devices,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 104, no. 2, pp. 402-410, Feb. 2016, doi: 10.1002/JBM.B.33371.

-[74]. C. Gúnday et al., “Ciprofloxacin-loaded polymeric nanoparticles incorporated electrospun fibers for drug delivery in tissue engineering applications,” Drug delivery and translational research, vol. 10, no. 3, pp. 706-720, Jun. 2020, doi: 10.1007/513346-020- 00736-1.

-[75]. J. Song, MS. Kook, BH. Kim, YIL. Jeong, and KJ. Oh, “Ciprofloxacin-Releasing ROS-Sensitive Nanoparticles Composed of Poly(Ethylene Glycol)/Poly(D,L-lactide-co-glycolide) for Antibacterial Treatment,” Materials (Basel, Switzerland), vol. 14, no. 15, Aug. 2021, doi: 10.3390/MA 14154125.

-[76]. A. Nawaz et al., “Ciprofloxacin-Loaded Gold Nanoparticles against Antimicrobial Resistance: An In Vivo Assessment,” Nanomaterials 2021, Vol. 11, Page 3152, vol. 11, no. 11, p. 3152, Nov. 2021, doi: 10.3390/NANO11113152.

-[77]. A. Shi, D. Li, H. Liu, B. Adhikari, and Q. Wang, “Effect of drying and loading methods on the release behavior of ciprofloxacin from starch nanoparticles,” International Journal of Biological Macromolecules, vol. 87, pp. 55-61, Jun. 2016, doi: 10.1016/J.IJBIOMAC.2016.02.038.

-[78]. Gamal A Shazly, “Characterization, In Vitro Release, and Antibacterial Activity Assessment,” 2017, doi: 10.1155/2017/2120734.

-[79]. N. Gúnday Túreli et al., “Ciprofloxacin-loaded PLGA nanoparticles against cystic fibrosis P. aeruginosa lung infections,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 117, pp. 363371, Aug. 2017, doi: 10.1016/J3.EJPB.2017.04.032.

-[80]. M. Banoee et al., “ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 93B, no. 2, pp. 557-561, May 2010, doi: 10.1002/JBM.B.31615.

Descargas

Publicado

2022-10-04

Cómo citar

Garcia Reyes, C. B., Castillo Ramos, V., Mangas Garcia , G., Navarrete Casas, R., & Sanchez Polo, M. (2022). Nanomateriales para el transporte y liberación controlada de ciprofloxacino en aplicaciones biomédicas. Quimica Hoy, 11(02), 8–17. https://doi.org/10.29105/qh11.02-289