Sun WF, Wang XK, Zhang Y. Terahertz generation from laser-induced plasma. Opto-Electron Sci 1, 220003 (2022). doi: 10.29026/oes.2022.220003
Citation: Sun WF, Wang XK, Zhang Y. Terahertz generation from laser-induced plasma. Opto-Electron Sci 1, 220003 (2022). doi: 10.29026/oes.2022.220003

Review Open Access

Terahertz generation from laser-induced plasma

More Information
  • Interest of the research in terahertz (THz) wave has been strongly motivated by its wide applications in the fields of physics, chemistry, biology, and engineering. Developing efficient and reliable THz source is of uttermost priority in these researches. Numerous attempts have been made in fulfilling the THz generation. Greatly benefited from the progress of the ultrafast pulses, the laser-induced-plasma is one of the auspicious tools to provide desirable THz waves, owing to its superiorities in high power threshold, intense THz signal, and ultrawide THz spectrum. This paper reviews the physics and progress of the THz generation from the laser-induced plasmas, which are produced by gas, liquid, and solid. The characteristics of the emitted THz waves are also included. There are many complicated physical processes involved in the interactions of laser-plasma, making various laser-plasma scenarios in the THz generations. In view of this, we will only focus on the THz generation classified by physical mechanisms. Finally, we discuss a perspective on the future of THz generation from the laser-induced plasma, as well as its involved challenges.
  • 加载中
  • [1] Cocker TL, Jelic V, Gupta M, Molesky SJ, Burgess JAJ et al. An ultrafast terahertz scanning tunnelling microscope. Nat Photonics 7, 620–625 (2013). doi: 10.1038/nphoton.2013.151

    CrossRef Google Scholar

    [2] Ho IC, Guo XY, Zhang XC. Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy. Opt Express 18, 2872–2883 (2010). doi: 10.1364/OE.18.002872

    CrossRef Google Scholar

    [3] Turner GM, Beard MC, Schmuttenmaer CA. Carrier localization and cooling in dye-sensitized nanocrystalline titanium dioxide. J Phys Chem B 106, 11716–11719 (2002). doi: 10.1021/jp025844e

    CrossRef Google Scholar

    [4] Leitner DM, Havenith M, Gruebele M. Biomolecule large-amplitude motion and solvation dynamics: modelling and probes from THz to X-rays. Int Rev Phys Chem 25, 553–582 (2006). doi: 10.1080/01442350600862117

    CrossRef Google Scholar

    [5] Niessen KA, Xu MY, Markelz AG. Terahertz optical measurements of correlated motions with possible allosteric function. Biophys Rev 7, 201–216 (2015). doi: 10.1007/s12551-015-0168-4

    CrossRef Google Scholar

    [6] Williams MRC, Aschaffenburg DJ, Ofori-Okai BK, Schmuttenmaer CA. Intermolecular vibrations in hydrophobic amino acid crystals: experiments and calculations. J Phys Chem B 117, 10444–10461 (2013). doi: 10.1021/jp406730a

    CrossRef Google Scholar

    [7] Bergé L, Kaltenecker K, Engelbrecht S, Nguyen A, Skupin S et al. Terahertz spectroscopy from air plasmas created by two-color femtosecond laser pulses: the ALTESSE project. Europhys Lett 126, 24001 (2019). doi: 10.1209/0295-5075/126/24001

    CrossRef Google Scholar

    [8] Henry SC, Zurk LM, Schecklman S, Duncan DD. Three-dimensional broadband terahertz synthetic aperture imaging. Opt Eng 51, 091603 (2012). doi: 10.1117/1.OE.51.9.091603

    CrossRef Google Scholar

    [9] Zanotto L, Piccoli R, Dong J L, Morandotti R, Razzari L. Single-pixel terahertz imaging: a review. Opto-Electron Adv 3, 200012 (2020). doi: 10.29026/oea.2020.200012

    CrossRef Google Scholar

    [10] Guo LH, Wang XK, Han P, Sun WF, Feng SF et al. Observation of dehydration dynamics in biological tissues with terahertz digital holography [Invited]. Appl Opt 56, F173–F178 (2017). doi: 10.1364/AO.56.00F173

    CrossRef Google Scholar

    [11] Ducournau G, Szriftgiser P, Beck A, Bacquet D, Pavanello F et al. Ultrawide-bandwidth single-channel 0.4-THz wireless link combining broadband quasi-optic photomixer and coherent detection. IEEE Trans Terahertz Sci Technol 4, 328–337 (2014). doi: 10.1109/TTHZ.2014.2309006

    CrossRef Google Scholar

    [12] Koenig S, Lopez-Diaz D, Antes J, Boes F, Henneberger R et al. Wireless sub-THz communication system with high data rate. Nat Photonics 7, 977–981 (2013). doi: 10.1038/nphoton.2013.275

    CrossRef Google Scholar

    [13] Nagatsuma T, Horiguchi S, Minamikata Y, Yoshimizu Y, Hisatake S et al. Terahertz wireless communications based on photonics technologies. Opt Express 21, 23736–23747 (2013). doi: 10.1364/OE.21.023736

    CrossRef Google Scholar

    [14] Nicoletti D, Cavalleri A. Nonlinear light–matter interaction at terahertz frequencies. Adv Opt Photonics 8, 401–464 (2016). doi: 10.1364/AOP.8.000401

    CrossRef Google Scholar

    [15] Hafez HA, Chai X, Ibrahim A, Mondal S, Férachou D et al. Intense terahertz radiation and their applications. J Opt 18, 093004 (2016). doi: 10.1088/2040-8978/18/9/093004

    CrossRef Google Scholar

    [16] Mittleman DM. Perspective: terahertz science and technology. J Appl Phys 122, 230901 (2017). doi: 10.1063/1.5007683

    CrossRef Google Scholar

    [17] Hwang HY, Fleischer S, Brandt NC, Perkins Jr BG, Liu MK et al. A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses. J Mod Opt 62, 1447–1479 (2015). doi: 10.1080/09500340.2014.918200

    CrossRef Google Scholar

    [18] Novelli F, Ruiz Pestana L, Bennett KC, Sebastiani F, Adams EM et al. Strong anisotropy in liquid water upon librational excitation using terahertz laser fields. J Phys Chem B 124, 4989–5001 (2020). doi: 10.1021/acs.jpcb.0c02448

    CrossRef Google Scholar

    [19] Zalden P, Song LW, Wu XJ, Huang HY, Ahr F et al. Molecular polarizability anisotropy of liquid water revealed by terahertz-induced transient orientation. Nat Commun 9, 2142 (2018). doi: 10.1038/s41467-018-04481-5

    CrossRef Google Scholar

    [20] Sajadi M, Wolf M, Kampfrath T. Transient birefringence of liquids induced by terahertz electric-field torque on permanent molecular dipoles. Nat Commun 8, 14963 (2017). doi: 10.1038/ncomms14963

    CrossRef Google Scholar

    [21] Bodrov S, Sergeev Y, Murzanev A, Stepanov A. Terahertz induced optical birefringence in polar and nonpolar liquids. J Chem Phys 147, 084507 (2017). doi: 10.1063/1.5000374

    CrossRef Google Scholar

    [22] Tcypkin A, Zhukova M, Melnik M, Vorontsova I, Kulya M et al. Giant third-order nonlinear response of liquids at terahertz frequencies. Phys Rev Appl 15, 054009 (2021). doi: 10.1103/PhysRevApplied.15.054009

    CrossRef Google Scholar

    [23] Rasekh P, Safari A, Yildirim M, Bhardwaj R, Ménard JM et al. Terahertz nonlinear spectroscopy of water vapor. ACS Photonics 8, 1683–1688 (2021). doi: 10.1021/acsphotonics.1c00056

    CrossRef Google Scholar

    [24] Kampfrath T, Tanaka K, Nelson KA. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat Photonics 7, 680–690 (2013). doi: 10.1038/nphoton.2013.184

    CrossRef Google Scholar

    [25] Novelli F, Guchhait B, Havenith M. Towards intense THz spectroscopy on water: characterization of optical rectification by GaP, OH1, and DSTMS at OPA wavelengths. Materials 13, 1311 (2020). doi: 10.3390/ma13061311

    CrossRef Google Scholar

    [26] Olejnik K, Seifert T, Kašpar Z, Novák V, Wadley P et al. Terahertz electrical writing speed in an antiferromagnetic memory. Sci Adv 4, eaar3566 (2018). doi: 10.1126/sciadv.aar3566

    CrossRef Google Scholar

    [27] Schlauderer S, Lange C, Baierl S, Ebnet T, Schmid CP et al. Temporal and spectral fingerprints of ultrafast all-coherent spin switching. Nature 569, 383–387 (2019). doi: 10.1038/s41586-019-1174-7

    CrossRef Google Scholar

    [28] Pálfalvi L, Fülöp JA, Tóth G, Hebling J. Evanescent-wave proton postaccelerator driven by intense THz pulse. Phys Rev ST Accel Beams 17, 031301 (2014). doi: 10.1103/PhysRevSTAB.17.031301

    CrossRef Google Scholar

    [29] Nova TF, Cartella A, Cantaluppi A, Först M, Bossini D et al. An effective magnetic field from optically driven phonons. Nat Phys 13, 132–136 (2017). doi: 10.1038/nphys3925

    CrossRef Google Scholar

    [30] Nanni EA, Huang WR, Hong KH, Ravi K, Fallahi A et al. Terahertz-driven linear electron acceleration. Nat Commun 6, 8486 (2015). doi: 10.1038/ncomms9486

    CrossRef Google Scholar

    [31] Zhang XC, Shkurinov A, Zhang Y. Extreme terahertz science. Nat Photonics 11, 16–18 (2017). doi: 10.1038/nphoton.2016.249

    CrossRef Google Scholar

    [32] Li X, Qiu T, Zhang JH, Baldini E, Lu J et al. Terahertz field–induced ferroelectricity in quantum paraelectric SrTiO3. Science 364, 1079–1082 (2019). doi: 10.1126/science.aaw4913

    CrossRef Google Scholar

    [33] Vella A, Houard J, Arnoldi L, Tang MC, Boudant M et al. High-resolution terahertz-driven atom probe tomography. Sci Adv 7, eabd7259 (2021). doi: 10.1126/sciadv.abd7259

    CrossRef Google Scholar

    [34] Dreyhaupt A, Winnerl S, Dekorsy T, Helm M. High-intensity terahertz radiation from a microstructured large-area photoconductor. Appl Phys Lett 86, 121114 (2005). doi: 10.1063/1.1891304

    CrossRef Google Scholar

    [35] Beck M, Schäfer H, Klatt G, Demsar J, Winnerl S et al. Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna. Opt Express 18, 9251–9257 (2010). doi: 10.1364/OE.18.009251

    CrossRef Google Scholar

    [36] Tong M Y, Hu Y Z, Xie X N, Zhu X G, Wang Z Y et al. Helicity-dependent THz emission induced by ultrafast spin photocurrent in nod-al-line semimetal candidate Mg3Bi2. Opto-Electron Adv 3, 200023 (2020). doi: 10.29026/oea.2020.200023

    CrossRef Google Scholar

    [37] Imafuji O, Singh BP, Hirose Y, Fukushima Y, Takigawa S. High power subterahertz electromagnetic wave radiation from GaN photoconductive switch. Appl Phys Lett 91, 071112 (2007). doi: 10.1063/1.2771528

    CrossRef Google Scholar

    [38] Blanchard F, Razzari L, Bandulet HC, Sharma G, Morandotti R et al. Generation of 1.5 μJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal. Opt Express 15, 13212–13220 (2007). doi: 10.1364/OE.15.013212

    CrossRef Google Scholar

    [39] Carnio BN, Schunemann PG, Zawilski KT, Elezzabi AY. Generation of broadband terahertz pulses via optical rectification in a chalcopyrite CdSiP2 crystal. Opt Lett 42, 3920–3923 (2017). doi: 10.1364/OL.42.003920

    CrossRef Google Scholar

    [40] Blanchard F, Schmidt BE, Ropagnol X, Thiré N, Ozaki T et al. Terahertz pulse generation from bulk GaAs by a tilted-pulse-front excitation at 1.8 μm. Appl Phys Lett 105, 241106 (2014). doi: 10.1063/1.4904005

    CrossRef Google Scholar

    [41] Hauri CP, Ruchert C, Vicario C, Ardana F. Strong-field single-cycle THz pulses generated in an organic crystal. Appl Phys Lett 99, 161116 (2011). doi: 10.1063/1.3655331

    CrossRef Google Scholar

    [42] Zhang ZL, Zhang JY, Chen YP, Xia TH, Wang LZ et al. Bessel terahertz pulses from superluminal laser plasma filaments. Ultrafast Sci 2022, 9870325 (2022).

    Google Scholar

    [43] Mitrofanov AV, Sidorov-Biryukov DA, Nazarov MM, Voronin AA, Rozhko MV et al. Ultraviolet-to-millimeter-band supercontinua driven by ultrashort mid-infrared laser pulses. Optica 7, 15–19 (2020). doi: 10.1364/OPTICA.7.000015

    CrossRef Google Scholar

    [44] Fülöp JA, Tzortzakis S, Kampfrath T. Laser-driven strong-field terahertz sources. Adv Opt Mater 8, 1900681 (2020). doi: 10.1002/adom.201900681

    CrossRef Google Scholar

    [45] Löffler T, Kress M, Thomson M, Roskos HG. Efficient terahertz pulse generation in laser-induced gas plasmas. Acta Phys Pol A 107, 99–108 (2005). doi: 10.12693/APhysPolA.107.99

    CrossRef Google Scholar

    [46] Hamster H. Generation of sub-picosecond terahertz radiation by laser-produced plasmas. (University of California, Berkeley, 1993).

    Google Scholar

    [47] Hora H. Laser Plasma Physics: Forces and the Nonlinearity Principle (SPIE, Bellingham, 2000).

    Google Scholar

    [48] Sprangle P, Peñano JR, Hafizi B, Kapetanakos CA. Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces. Phys Rev E 69, 066415 (2004). doi: 10.1103/PhysRevE.69.066415

    CrossRef Google Scholar

    [49] Cheng CC, Wright EM, Moloney JV. Generation of electromagnetic pulses from plasma channels induced by femtosecond light strings. Phys Rev Lett 87, 213001 (2001). doi: 10.1103/PhysRevLett.87.213001

    CrossRef Google Scholar

    [50] Shkurinov AP, Sinko AS, Solyankin PM, Borodin AV, Esaulkov MN et al. Impact of the dipole contribution on the terahertz emission of air-based plasma induced by tightly focused femtosecond laser pulses. Phys Rev E 95, 043209 (2017). doi: 10.1103/PhysRevE.95.043209

    CrossRef Google Scholar

    [51] Kolesik M, Moloney JV, Mlejnek M. Unidirectional optical pulse propagation equation. Phys Rev Lett 89, 283902 (2002). doi: 10.1103/PhysRevLett.89.283902

    CrossRef Google Scholar

    [52] Kolesik M, Moloney JV. Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations. Phys Rev E 70, 036604 (2004). doi: 10.1103/PhysRevE.70.036604

    CrossRef Google Scholar

    [53] Babushkin I, Kuehn W, Köhler C, Skupin S, Bergé L et al. Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases. Phys Rev Lett 105, 053903 (2010). doi: 10.1103/PhysRevLett.105.053903

    CrossRef Google Scholar

    [54] Babushkin I, Skupin S, Husakou A, Köhler C, Cabrera-Granado E et al. Tailoring terahertz radiation by controlling tunnel photoionization events in gases. New J Phys 13, 123029 (2011). doi: 10.1088/1367-2630/13/12/123029

    CrossRef Google Scholar

    [55] Bergé L, Skupin S, Köhler C, Babushkin I, Herrmann J. 3D numerical simulations of THz generation by two-color laser filaments. Phys Rev Lett 110, 073901 (2013). doi: 10.1103/PhysRevLett.110.073901

    CrossRef Google Scholar

    [56] Nguyen A, Kaltenecker KJ, Delagnes JC, Zhou B, Cormier E et al. Wavelength scaling of terahertz pulse energies delivered by two-color air plasmas. Opt Lett 44, 1488–1491 (2019). doi: 10.1364/OL.44.001488

    CrossRef Google Scholar

    [57] D’Amico C, Houard A, Franco M, Prade B, Mysyrowicz A et al. Conical forward THz emission from femtosecond-laser-beam filamentation in air. Phys Rev Lett 98, 235002 (2007). doi: 10.1103/PhysRevLett.98.235002

    CrossRef Google Scholar

    [58] Amico CD, Houard A, Akturk S, Liu Y, Le Bloas J et al. Forward THz radiation emission by femtosecond filamentation in gases: theory and experiment. New J Phys 10, 013015 (2008). doi: 10.1088/1367-2630/10/1/013015

    CrossRef Google Scholar

    [59] Cook DJ, Hochstrasser RM. Intense terahertz pulses by four-wave rectification in air. Opt Lett 25, 1210–1212 (2000). doi: 10.1364/OL.25.001210

    CrossRef Google Scholar

    [60] Kress M, Löffler T, Eden S, Thomson M, Roskos HG. Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves. Opt Lett 29, 1120–1122 (2004). doi: 10.1364/OL.29.001120

    CrossRef Google Scholar

    [61] Xie X, Dai JM, Zhang XC. Coherent control of THz wave generation in ambient air. Phys Rev Lett 96, 075005 (2006). doi: 10.1103/PhysRevLett.96.075005

    CrossRef Google Scholar

    [62] Houard A, Liu Y, Prade B, Mysyrowicz A. Polarization analysis of terahertz radiation generated by four-wave mixing in air. Opt Lett 33, 1195–1197 (2008). doi: 10.1364/OL.33.001195

    CrossRef Google Scholar

    [63] Kim KY, Glownia JH, Taylor AJ, Rodriguez G. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Opt Express 15, 4577–4584 (2007). doi: 10.1364/OE.15.004577

    CrossRef Google Scholar

    [64] Kim KY, Taylor AJ, Glownia JH, Rodriguez G. Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions. Nat Photonics 2, 605–609 (2008). doi: 10.1038/nphoton.2008.153

    CrossRef Google Scholar

    [65] de Alaiza Martínez PG, Babushkin I, Bergé L, Skupin S, Cabrera-Granado E et al. Boosting terahertz generation in laser-field ionized gases using a sawtooth wave shape. Phys Rev Lett 114, 183901 (2015). doi: 10.1103/PhysRevLett.114.183901

    CrossRef Google Scholar

    [66] Lu CH, Zhang CY, Zhang LQ, Wang XW, Zhang SA. Modulation of terahertz-spectrum generation from an air plasma by tunable three-color laser pulses. Phys Rev A 96, 053402 (2017). doi: 10.1103/PhysRevA.96.053402

    CrossRef Google Scholar

    [67] Liu SJ, Fan ZQ, Lu CH, Gui JY, Luo C et al. Coherent control of boosted terahertz radiation from air plasma pumped by a femtosecond three-color sawtooth field. Phys Rev A 102, 063522 (2020). doi: 10.1103/PhysRevA.102.063522

    CrossRef Google Scholar

    [68] Andreeva VA, Kosareva OG, Panov NA, Shipilo DE, Solyankin PM et al. Ultrabroad terahertz spectrum generation from an air-based filament plasma. Phys Rev Lett 116, 063902 (2016). doi: 10.1103/PhysRevLett.116.063902

    CrossRef Google Scholar

    [69] Vaičaitis V, Ivanov M, Adomavičius K, Svirskas Ž, Morgner U et al. Influence of laser-preformed plasma on THz wave generation in air by bichromatic laser pulses. Laser Phys 28, 095402 (2018). doi: 10.1088/1555-6611/aaca5f

    CrossRef Google Scholar

    [70] Houard A, Liu Y, Prade B, Tikhonchuk VT, Mysyrowicz A. Strong enhancement of terahertz radiation from laser filaments in air by a static electric field. Phys Rev Lett 100, 255006 (2008). doi: 10.1103/PhysRevLett.100.255006

    CrossRef Google Scholar

    [71] Sun WF, Zhou YS, Wang XK, Zhang Y. External electric field control of THz pulse generation in ambient air. Opt Express 16, 16573–16580 (2008). doi: 10.1364/OE.16.016573

    CrossRef Google Scholar

    [72] Wang TJ, Ju JJ, Liu YX, Li RX, Xu ZX et al. Waveform control of enhanced THz radiation from femtosecond laser filament in air. Appl Phys Lett 110, 221102 (2017). doi: 10.1063/1.4984599

    CrossRef Google Scholar

    [73] Liu Y, Houard A, Prade B, Mysyrowicz A, Diaw A et al. Amplification of transition-Cherenkov terahertz radiation of femtosecond filament in air. Appl Phys Lett 93, 051108 (2008). doi: 10.1063/1.2965612

    CrossRef Google Scholar

    [74] D’Amico C, Houard A, Franco M, Prade B, Mysyrowicz A. Coherent and incoherent radial THz radiation emission from femtosecond filaments in air. Opt Express 15, 15274–15279 (2007). doi: 10.1364/OE.15.015274

    CrossRef Google Scholar

    [75] Zhao JY, Guo LJ, Chu W, Zeng B, Gao H et al. Simple method to enhance terahertz radiation from femtosecond laser filament array with a step phase plate. Opt Lett 40, 3838–3841 (2015). doi: 10.1364/OL.40.003838

    CrossRef Google Scholar

    [76] Song QY, Yuan XM, Hu SS, Huang JF, Zhong HZ et al. Enhance terahertz radiation and its polarization- control with two paralleled filaments pumped by two-color femtosecond laser fields. Opt Express 29, 22659–22666 (2021). doi: 10.1364/OE.427896

    CrossRef Google Scholar

    [77] Liu Y, Houard A, Prade B, Akturk S, Mysyrowicz A et al. Terahertz radiation source in air based on bifilamentation of femtosecond laser pulses. Phys Rev Lett 99, 135002 (2007). doi: 10.1103/PhysRevLett.99.135002

    CrossRef Google Scholar

    [78] Panov N, Andreeva V, Kosareva O, Shkurinov A, Makarov VA et al. Directionality of terahertz radiation emitted from an array of femtosecond filaments in gases. Laser Phys Lett 11, 125401 (2014). doi: 10.1088/1612-2011/11/12/125401

    CrossRef Google Scholar

    [79] Mitryukovskiy SI, Liu Y, Prade B, Houard A, Mysyrowicz A. Coherent synthesis of terahertz radiation from femtosecond laser filaments in air. Appl Phys Lett 102, 221107 (2013). doi: 10.1063/1.4807917

    CrossRef Google Scholar

    [80] Manceau JM, Averchi A, Bonaretti F, Faccio D, Di Trapani P et al. Terahertz pulse emission optimization from tailored femtosecond laser pulse filamentation in air. Opt Lett 34, 2165–2167 (2009). doi: 10.1364/OL.34.002165

    CrossRef Google Scholar

    [81] Wang WM, Sheng ZM, Dong XG, Du HW, Li YT et al. Controllable far-infrared electromagnetic radiation from plasmas applied by dc or ac bias electric fields. J Appl Phys 107, 023113 (2010). doi: 10.1063/1.3296126

    CrossRef Google Scholar

    [82] Yoo YJ, Kuk D, Zhong ZQ, Kim KY. Generation and characterization of strong terahertz fields from kHz laser filamentation. IEEE J Sel Top Quantum Electron 23, 8501007 (2016).

    Google Scholar

    [83] Alirezaee H, Sharifian M. Contribution of photocurrent mechanism and influence of plasma length in THz generation by two-color laser induced plasma. Phys Plasmas 25, 043112 (2018). doi: 10.1063/1.5020774

    CrossRef Google Scholar

    [84] Chen M, Yuan XH, Sheng ZM. Scalable control of terahertz radiation from ultrashort laser-gas interaction. Appl Phys Lett 101, 161908 (2012). doi: 10.1063/1.4761941

    CrossRef Google Scholar

    [85] Liu K, Koulouklidis AD, Papazoglou DG, Tzortzakis S, Zhang XC. Enhanced terahertz wave emission from air-plasma tailored by abruptly autofocusing laser beams. Optica 3, 605–608 (2016). doi: 10.1364/OPTICA.3.000605

    CrossRef Google Scholar

    [86] Hah J, Jiang W, He ZH, Nees JA, Hou B et al. Enhancement of THz generation by feedback-optimized wavefront manipulation. Opt Express 25, 17271–17279 (2017). doi: 10.1364/OE.25.017271

    CrossRef Google Scholar

    [87] Kuk D, Yoo YJ, Rosenthal EW, Jhajj N, Milchberg HM et al. Generation of scalable terahertz radiation from cylindrically focused two-color laser pulses in air. Appl Phys Lett 108, 121106 (2016). doi: 10.1063/1.4944843

    CrossRef Google Scholar

    [88] Su Q, Liu WW, Lu D, Qi PF, Kosareva O et al. Influence of the tilting angle of a BBO crystal on the terahertz radiation produced by a dual-color femtosecond laser. IEEE Trans Terahertz Sci Technol 9, 669–674 (2019). doi: 10.1109/TTHZ.2019.2934717

    CrossRef Google Scholar

    [89] Li H, Zhang Y, Sun WF, Wang XK, Feng SF et al. Contribution of the optical rectification in terahertz radiation driven by two-color laser induced plasma. Opt Express 28, 4810–4816 (2020). doi: 10.1364/OE.386092

    CrossRef Google Scholar

    [90] Xie J, Fan WH, Chen X. Systematic experimental study on a highly efficient terahertz source based on two-color laser-induced air plasma. Laser Phys 26, 055002 (2016). doi: 10.1088/1054-660X/26/5/055002

    CrossRef Google Scholar

    [91] Buccheri F, Zhang XC. Terahertz emission from laser-induced microplasma in ambient air. Optica 2, 366–369 (2015). doi: 10.1364/OPTICA.2.000366

    CrossRef Google Scholar

    [92] Jang D, Schwartz RM, Woodbury D, Griff-McMahon J, Younis AH et al. Efficient terahertz and Brunel harmonic generation from air plasma via mid-infrared coherent control. Optica 6, 1338–1341 (2019). doi: 10.1364/OPTICA.6.001338

    CrossRef Google Scholar

    [93] Fedorov VY, Tzortzakis S. Optimal wavelength for two-color filamentation-induced terahertz sources. Opt Express 26, 31150–31159 (2018). doi: 10.1364/OE.26.031150

    CrossRef Google Scholar

    [94] Nguyen A, de Alaiza Martínez PG, Thiele I, Skupin S, Bergé L. Broadband terahertz radiation from two-color mid- and far-infrared laser filaments in air. Phys Rev A 97, 063839 (2018). doi: 10.1103/PhysRevA.97.063839

    CrossRef Google Scholar

    [95] Wang WM, Kawata S, Sheng ZM, Li YT, Chen LM et al. Efficient terahertz emission by mid-infrared laser pulses from gas targets. Opt Lett 36, 2608–2610 (2011). doi: 10.1364/OL.36.002608

    CrossRef Google Scholar

    [96] Koulouklidis AD, Gollner C, Shumakova V, Fedorov VY, Pugžlys A et al. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments. Nat Commun 11, 292 (2020). doi: 10.1038/s41467-019-14206-x

    CrossRef Google Scholar

    [97] Meng C, Chen WB, Wang XW, Lü ZH, Huang YD et al. Enhancement of terahertz radiation by using circularly polarized two-color laser fields. Appl Phys Lett 109, 131105 (2016). doi: 10.1063/1.4963883

    CrossRef Google Scholar

    [98] Tailliez C, Stathopulos A, Skupin S, Buožius D, Babushkin I et al. Terahertz pulse generation by two-color laser fields with circular polarization. New J Phys 22, 103038 (2020). doi: 10.1088/1367-2630/abb863

    CrossRef Google Scholar

    [99] Wang SX, Lu CH, Fan ZQ, Houard A, Tikhonchuk V et al. Coherently controlled ionization of gases by three-color femtosecond laser pulses. Phys Rev A 105, 023529 (2022). doi: 10.1103/PhysRevA.105.023529

    CrossRef Google Scholar

    [100] Vaičaitis V, Balachninaitė O, Morgner U, Babushkin I. Terahertz radiation generation by three-color laser pulses in air filament. J Appl Phys 125, 173103 (2019). doi: 10.1063/1.5078683

    CrossRef Google Scholar

    [101] Vvedenskii NV, Korytin AI, Kostin VA, Murzanev AA, Silaev AA et al. Two-color laser-plasma generation of terahertz radiation using a frequency-tunable half harmonic of a femtosecond pulse. Phys Rev Lett 112, 055004 (2014). doi: 10.1103/PhysRevLett.112.055004

    CrossRef Google Scholar

    [102] Wang WM, Li YT, Sheng ZM, Lu X, Zhang J. Terahertz radiation by two-color lasers due to the field ionization of gases. Phys Rev E 87, 033108 (2013). doi: 10.1103/PhysRevE.87.033108

    CrossRef Google Scholar

    [103] Zhang LL, Wang WM, Wu T, Zhang R, Zhang SJ et al. Observation of terahertz radiation via the two-color laser scheme with uncommon frequency ratios. Phys Rev Lett 119, 235001 (2017). doi: 10.1103/PhysRevLett.119.235001

    CrossRef Google Scholar

    [104] Zhang Z, Panov N, Andreeva V, Zhang ZL, Slepkov A et al. Optimum chirp for efficient terahertz generation from two-color femtosecond pulses in air. Appl Phys Lett 113, 241103 (2018). doi: 10.1063/1.5053893

    CrossRef Google Scholar

    [105] Wang WM, Sheng ZM, Wu HC, Chen M, Li C et al. Strong terahertz pulse generation by chirped laser pulses in tenuous gases. Opt Express 16, 16999–17006 (2008). doi: 10.1364/OE.16.016999

    CrossRef Google Scholar

    [106] Wang WM, Kawata S, Sheng ZM, Li YT, Zhang J. Towards gigawatt terahertz emission by few-cycle laser pulses. Phys Plasmas 18, 073108 (2011). doi: 10.1063/1.3614522

    CrossRef Google Scholar

    [107] Nguyen A, de Alaiza Martínez PG, Thiele I, Skupin S, Bergé L. THz field engineering in two-color femtosecond filaments using chirped and delayed laser pulses. New J Phys 20, 033026 (2018). doi: 10.1088/1367-2630/aaa470

    CrossRef Google Scholar

    [108] Dai JM, Xie X, Zhang XC. Detection of broadband terahertz waves with a laser-induced plasma in gases. Phys Rev Lett 97, 103903 (2006). doi: 10.1103/PhysRevLett.97.103903

    CrossRef Google Scholar

    [109] Clough B, Liu JL, Zhang XC. “All air–plasma” terahertz spectroscopy. Opt Lett 36, 2399–2401 (2011). doi: 10.1364/OL.36.002399

    CrossRef Google Scholar

    [110] Blank V, Thomson MD, Roskos HG. Spatio-spectral characteristics of ultra-broadband THz emission from two-colour photoexcited gas plasmas and their impact for nonlinear spectroscopy. New J Phys 15, 075023 (2013). doi: 10.1088/1367-2630/15/7/075023

    CrossRef Google Scholar

    [111] Chen YP, Zhang ZL, Zhang Z, Yuan XH, Liu F et al. Spectral interference of terahertz pulses from two laser filaments in air. Appl Phys Lett 106, 221105 (2015). doi: 10.1063/1.4922143

    CrossRef Google Scholar

    [112] Zhang ZL, Chen YP, Yang L, Yuan XH, Liu F et al. Dual-frequency terahertz emission from splitting filaments induced by lens tilting in air. Appl Phys Lett 105, 101110 (2014). doi: 10.1063/1.4895720

    CrossRef Google Scholar

    [113] He BQ, Nan JY, Li M, Yuan S, Zeng HP. Terahertz modulation induced by filament interaction. Opt Lett 42, 967–970 (2017). doi: 10.1364/OL.42.000967

    CrossRef Google Scholar

    [114] Du HW, Hoshina H, Otani C, Midorikawa K. Terahertz waves radiated from two noncollinear femtosecond plasma filaments. Appl Phys Lett 107, 211113 (2015). doi: 10.1063/1.4936618

    CrossRef Google Scholar

    [115] Zhang Y, Sun WF, Wang XK, Ye JS, Feng SF et al. Active modulation of the terahertz spectra radiated from two air plasmas. Opt Lett 42, 1907–1910 (2017). doi: 10.1364/OL.42.001907

    CrossRef Google Scholar

    [116] Li M, Yuan S, Zeng HP. THz frequency modulation by filamentary plasma grating. IEEE J Sel Top Quantum Electron 23, 8400604 (2017).

    Google Scholar

    [117] Sheng W, Tang F, Zhang ZL, Chen YP, Peng XY et al. Spectral control of terahertz radiation from inhomogeneous plasma filaments by tailoring two-color laser beams. Opt Express 29, 8676–8684 (2021). doi: 10.1364/OE.417515

    CrossRef Google Scholar

    [118] Minami Y, Kurihara T, Yamaguchi K, Nakajima M, Suemoto T. Longitudinal terahertz wave generation from an air plasma filament induced by a femtosecond laser. Appl Phys Lett 102, 151106 (2013). doi: 10.1063/1.4802482

    CrossRef Google Scholar

    [119] Dai JM, Karpowicz N, Zhang XC. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Phys Rev Lett 103, 023001 (2009). doi: 10.1103/PhysRevLett.103.023001

    CrossRef Google Scholar

    [120] You YS, Oh TI, Kim KY. Mechanism of elliptically polarized terahertz generation in two-color laser filamentation. Opt Lett 38, 1034–1036 (2013). doi: 10.1364/OL.38.001034

    CrossRef Google Scholar

    [121] Chen YP, Marceau C, Génier S, Théberge F, Châteauneuf M et al. Elliptically polarized terahertz emission through four-wave mixing in a two-color filament in air. Opt Commun 282, 4283–4287 (2009). doi: 10.1016/j.optcom.2009.07.044

    CrossRef Google Scholar

    [122] Zhang Y, Chen Y, Marceau C, Liu W, Sun ZD et al. Non-radially polarized THz pulse emitted from femtosecond laser filament in air. Opt Express 16, 15483–15488 (2008). doi: 10.1364/OE.16.015483

    CrossRef Google Scholar

    [123] Smirnov SV, Kulya MS, Tcypkin AN, Putilin SE, Bespalov VG. Detection of the polarization spatial distribution of THz radiation generated by two-color laser filamentation. Nanosyst Phys Chem Math 8, 613–619 (2017).

    Google Scholar

    [124] Xie D, Zhang H, Yin Y, Wang J, Yu TP. Tunable elliptically polarized Hermite-Gaussian terahertz radiation driven by two-color twisted laser pulses. Opt Express 28, 33784–33794 (2020). doi: 10.1364/OE.410906

    CrossRef Google Scholar

    [125] Fedorov VY, Koulouklidis AD, Tzortzakis S. THz generation by two-color femtosecond filaments with complex polarization states: four-wave mixing versus photocurrent contributions. Plasma Phys Control Fusion 59, 014025 (2017). doi: 10.1088/0741-3335/59/1/014025

    CrossRef Google Scholar

    [126] Lu XF, Zhang XC. Generation of elliptically polarized terahertz waves from laser-induced plasma with double helix electrodes. Phys Rev Lett 108, 123903 (2012). doi: 10.1103/PhysRevLett.108.123903

    CrossRef Google Scholar

    [127] Su Q, Xu Q, Zhang N, Zhang Y, Liu WW. Control of terahertz pulse polarization by two crossing DC fields during femtosecond laser filamentation in air. J Opt Soc Am B 36, G1–G5 (2019). doi: 10.1364/JOSAB.36.0000G1

    CrossRef Google Scholar

    [128] Kosareva O, Esaulkov M, Panov N, Andreeva V, Shipilo D et al. Polarization control of terahertz radiation from two-color femtosecond gas breakdown plasma. Opt Lett 43, 90–93 (2018). doi: 10.1364/OL.43.000090

    CrossRef Google Scholar

    [129] Jahangiri F, Hashida M, Tokita S, Nagashima T, Hangyo M et al. Directional elliptically polarized terahertz emission from air plasma produced by circularly polarized intense femtosecond laser pulses. Appl Phys Lett 99, 161505 (2011). doi: 10.1063/1.3651764

    CrossRef Google Scholar

    [130] Zhong H, Karpowicz N, Zhang XC. Terahertz emission profile from laser-induced air plasma. Appl Phys Lett 88, 261103 (2006). doi: 10.1063/1.2216025

    CrossRef Google Scholar

    [131] Akhmedzhanov RA, Ilyakov IE, Mironov VA, Suvorov EV, Fadeev DA et al. Generation of terahertz radiation by the optical breakdown induced by a bichromatic laser pulse. J Exp Theor Phys 109, 370–378 (2009). doi: 10.1134/S1063776109090027

    CrossRef Google Scholar

    [132] You YS, Oh TI, Kim KY. Off-axis phase-matched terahertz emission from two-color laser-induced plasma filaments. Phys Rev Lett 109, 183902 (2012). doi: 10.1103/PhysRevLett.109.183902

    CrossRef Google Scholar

    [133] Gorodetsky A, Koulouklidis AD, Massaouti M, Tzortzakis S. Physics of the conical broadband terahertz emission from two-color laser-induced plasma filaments. Phys Rev A 89, 033838 (2014). doi: 10.1103/PhysRevA.89.033838

    CrossRef Google Scholar

    [134] Klarskov P, Strikwerda AC, Iwaszczuk K, Jepsen PU. Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma. New J Phys 15, 075012 (2013). doi: 10.1088/1367-2630/15/7/075012

    CrossRef Google Scholar

    [135] Chizhov PA, Ushakov AA, Bukin VV, Garnov SV. Measurement of spatio-temporal field distribution of THz pulses in electro-optic crystal by interferometry method. Quantum Electron 45, 434–436 (2015). doi: 10.1070/QE2015v045n05ABEH015774

    CrossRef Google Scholar

    [136] Wang XK, Cui Y, Sun WF, Ye JS, Zhang Y. Terahertz real-time imaging with balanced electro-optic detection. Opt Commun 283, 4626–4632 (2010). doi: 10.1016/j.optcom.2010.07.010

    CrossRef Google Scholar

    [137] Wang EL, Wang YL, Sun WF, Wang XK, Feng SF et al. Spatiotemporal distribution characterization for terahertz waves generated from plasma induced by two-color pulses. Front Phys 9, 768186 (2021). doi: 10.3389/fphy.2021.768186

    CrossRef Google Scholar

    [138] Koribut AV, Rizaev GE, Mokrousova DV, Savinov SA, Reutov AA et al. Similarity of angular distribution for THz radiation emitted by laser filament plasma channels of different lengths. Opt Lett 45, 4009–4011 (2020). doi: 10.1364/OL.394377

    CrossRef Google Scholar

    [139] Sørensen CB, Guiramand L, Degert J, Tondusson M, Skovsen E et al. Conical versus Gaussian terahertz emission from two-color laser-induced air plasma filaments. Opt Lett 45, 2132–2135 (2020). doi: 10.1364/OL.390112

    CrossRef Google Scholar

    [140] Ushakov AA, Chizhov PA, Andreeva VA, Panov NA, Shipilo DE et al. Ring and unimodal angular-frequency distribution of THz emission from two-color femtosecond plasma spark. Opt Express 26, 18202–18213 (2018). doi: 10.1364/OE.26.018202

    CrossRef Google Scholar

    [141] Thrane L, Jacobsen RH, Jepsen PU, Keiding SR. THz reflection spectroscopy of liquid water. Chem Phys Lett 240, 330–333 (1995). doi: 10.1016/0009-2614(95)00543-D

    CrossRef Google Scholar

    [142] E YW, Zhang LL, Tsypkin A, Kozlov S, Zhang CL et al. Progress, challenges, and opportunities of terahertz emission from liquids. J Opt Soc Am B 39, A43–A51 (2022). doi: 10.1364/JOSAB.446095

    CrossRef Google Scholar

    [143] Jin Q, E YW, Williams K, Dai JM, Zhang XC. Observation of broadband terahertz wave generation from liquid water. Appl Phys Lett 111, 071103 (2017). doi: 10.1063/1.4990824

    CrossRef Google Scholar

    [144] E YW, Jin Q, Tcypkin A, Zhang XC. Terahertz wave generation from liquid water films via laser-induced breakdown. Appl Phys Lett 113, 181103 (2018). doi: 10.1063/1.5054599

    CrossRef Google Scholar

    [145] Feng SJ, Dong LQ, Wu T, Tan Y, Zhang R et al. Terahertz wave emission from water lines. Chin Opt Lett 18, 023202 (2020). doi: 10.3788/COL202018.023202

    CrossRef Google Scholar

    [146] Zhang LL, Wang WM, Wu T, Feng SJ, Kang K et al. Strong terahertz radiation from a liquid-water line. Phys Rev Appl 12, 014005 (2019). doi: 10.1103/PhysRevApplied.12.014005

    CrossRef Google Scholar

    [147] Tcypkin AN, Ponomareva EA, Putilin SE, Smirnov SV, Shtumpf SA et al. Flat liquid jet as a highly efficient source of terahertz radiation. Opt Express 27, 15485–15494 (2019). doi: 10.1364/OE.27.015485

    CrossRef Google Scholar

    [148] Stumpf S, Ponomareva E, Tcypkin A, Putilin S, Korolev A et al. Temporal field and frequency spectrum of intense femtosecond radiation dynamics in the process of plasma formation in a dielectric medium. Laser Phys 29, 124014 (2019). doi: 10.1088/1555-6611/ab4dac

    CrossRef Google Scholar

    [149] Dey I, Jana K, Fedorov VY, Koulouklidis AD, Mondal A et al. Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids. Nat Commun 8, 1184 (2017). doi: 10.1038/s41467-017-01382-x

    CrossRef Google Scholar

    [150] Wang HY, Shen T. Unified theoretical model for both one- and two-color laser excitation of terahertz waves from a liquid. Appl Phys Lett 117, 131101 (2020). doi: 10.1063/5.0014872

    CrossRef Google Scholar

    [151] Lu CH, He T, Zhang LQ, Zhang H, Yao YH et al. Effect of two-color laser pulse duration on intense terahertz generation at different laser intensities. Phys Rev A 92, 063850 (2015). doi: 10.1103/PhysRevA.92.063850

    CrossRef Google Scholar

    [152] Chen YX, He YH, Zhang YF, Tian Z, Dai JM. Systematic investigation of terahertz wave generation from liquid water lines. Opt Express 29, 20477–20486 (2021). doi: 10.1364/OE.425207

    CrossRef Google Scholar

    [153] Jin Q, E YW, Gao SH, Zhang XC. Preference of subpicosecond laser pulses for terahertz wave generation from liquids. Adv Photonics 2, 015001 (2020). doi: 10.1117/1.AP.2.1.015001

    CrossRef Google Scholar

    [154] Li M, Li ZY, Nan JY, Xia Y, He MY et al. THz generation from water wedge excited by dual-color pulse. Chin Opt Lett 18, 073201 (2020). doi: 10.3788/COL202018.073201

    CrossRef Google Scholar

    [155] Jin Q, E YW, Zhang XC. Terahertz aqueous photonics. Front Optoelectron 14, 37–63 (2021). doi: 10.1007/s12200-020-1070-7

    CrossRef Google Scholar

    [156] Jin Q, Dai JM, E YW, Zhang XC. Terahertz wave emission from a liquid water film under the excitation of asymmetric optical fields. Appl Phys Lett 113, 261101 (2018). doi: 10.1063/1.5064644

    CrossRef Google Scholar

    [157] Danson C, Hillier D, Hopps N, Neely D. Petawatt class lasers worldwide. High Power Laser Sci Eng 3, e3 (2015). doi: 10.1017/hpl.2014.52

    CrossRef Google Scholar

    [158] Mourou GA, Tajima T, Bulanov SV. Optics in the relativistic regime. Rev Mod Phys 78, 309–371 (2006). doi: 10.1103/RevModPhys.78.309

    CrossRef Google Scholar

    [159] Hamster H, Sullivan A, Gordon S, White W, Falcone RW. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Phys Rev Lett 71, 2725–2728 (1993). doi: 10.1103/PhysRevLett.71.2725

    CrossRef Google Scholar

    [160] Hamster H, Sullivan A, Gordon S, Falcone RW. Short-pulse terahertz radiation from high-intensity-laser-produced plasmas. Phys Rev E 49, 671–677 (1994). doi: 10.1103/PhysRevE.49.671

    CrossRef Google Scholar

    [161] Gopal A, Singh P, Herzer S, Reinhard A, Schmidt A et al. Characterization of 700 μJ T rays generated during high-power laser solid interaction. Opt Lett 38, 4705–4707 (2013). doi: 10.1364/OL.38.004705

    CrossRef Google Scholar

    [162] Hinkel-Lipsker DE, Fried BD, Morales GJ. Analytic expression for mode conversion of Langmuir and electromagnetic waves. Phys Rev Lett 62, 2680–2682 (1989). doi: 10.1103/PhysRevLett.62.2680

    CrossRef Google Scholar

    [163] Liao GQ, Li YT. Review of intense terahertz radiation from relativistic laser-produced plasmas. IEEE Trans Plasma Sci 47, 3002–3008 (2019). doi: 10.1109/TPS.2019.2915624

    CrossRef Google Scholar

    [164] Yoshii J, Lai CH, Katsouleas T, Joshi C, Mori WB. Radiation from Cerenkov wakes in a magnetized plasma. Phys Rev Lett 79, 4194–4197 (1997). doi: 10.1103/PhysRevLett.79.4194

    CrossRef Google Scholar

    [165] Liao GQ, Li YT, Li C, Su LN, Zheng Y et al. Bursts of terahertz radiation from large-scale plasmas irradiated by relativistic picosecond laser pulses. Phys Rev Lett 114, 255001 (2015). doi: 10.1103/PhysRevLett.114.255001

    CrossRef Google Scholar

    [166] Wu HC, Sheng ZM, Zhang J. Single-cycle powerful megawatt to gigawatt terahertz pulse radiated from a wavelength-scale plasma oscillator. Phys Rev E 77, 046405 (2008). doi: 10.1103/PhysRevE.77.046405

    CrossRef Google Scholar

    [167] Chen ZY, Li XY, Yu W. Intense terahertz emission from relativistic circularly polarized laser pulses interaction with overdense plasmas. Phys Plasmas 20, 103115 (2013). doi: 10.1063/1.4826508

    CrossRef Google Scholar

    [168] Sagisaka A, Daido H, Nashima S, Orimo S, Ogura K et al. Simultaneous generation of a proton beam and terahertz radiation in high-intensity laser and thin-foil interaction. Appl Phys B 90, 373–377 (2008). doi: 10.1007/s00340-008-2931-8

    CrossRef Google Scholar

    [169] Li YT, Li C, Zhou ML, Wang WM, Du F et al. Strong terahertz radiation from relativistic laser interaction with solid density plasmas. Appl Phys Lett 100, 254101 (2012). doi: 10.1063/1.4729874

    CrossRef Google Scholar

    [170] Nakamura T, Kato S, Nagatomo H, Mima K. Surface-magnetic-field and fast-electron current-layer formation by ultraintense laser irradiation. Phys Rev Lett 93, 265002 (2004). doi: 10.1103/PhysRevLett.93.265002

    CrossRef Google Scholar

    [171] Li YT, Yuan XH, Xu MH, Zheng ZY, Sheng ZM et al. Observation of a fast electron beam emitted along the surface of a target irradiated by intense femtosecond laser pulses. Phys Rev Lett 96, 165003 (2006). doi: 10.1103/PhysRevLett.96.165003

    CrossRef Google Scholar

    [172] Liao GQ, Li YT, Li C, Mondal S, Hafez HA et al. Terahertz emission from two-plasmon-decay induced transient currents in laser-solid interactions. Phys Plasmas 23, 013104 (2016). doi: 10.1063/1.4939605

    CrossRef Google Scholar

    [173] Li C, Liao GQ, Zhou ML, Du F, Ma JL et al. Backward terahertz radiation from intense laser-solid interactions. Opt Express 24, 4010–4021 (2016). doi: 10.1364/OE.24.004010

    CrossRef Google Scholar

    [174] Ginzburg VL, Frank IM. Radiation of a uniformly moving electron due to its transition from one medium into another. J Phys 9, 353–362 (1945).

    Google Scholar

    [175] Herzer S, Woldegeorgis A, Polz J, Reinhard A, Almassarani M et al. An investigation on THz yield from laser-produced solid density plasmas at relativistic laser intensities. New J Phys 20, 063019 (2018). doi: 10.1088/1367-2630/aaada0

    CrossRef Google Scholar

    [176] Gopal A, Herzer S, Schmidt A, Singh P, Reinhard A et al. Observation of gigawatt-class THz pulses from a compact laser-driven particle accelerator. Phys Rev Lett 111, 074802 (2013). doi: 10.1103/PhysRevLett.111.074802

    CrossRef Google Scholar

    [177] Mora P. Plasma expansion into a vacuum. Phys Rev Lett 90, 185002 (2003). doi: 10.1103/PhysRevLett.90.185002

    CrossRef Google Scholar

    [178] Déchard J, Davoine X, Gremillet L, Bergé L. Terahertz emission from submicron solid targets irradiated by ultraintense femtosecond laser pulses. Phys Plasmas 27, 093105 (2020). doi: 10.1063/5.0013415

    CrossRef Google Scholar

    [179] Leemans WP, Geddes CGR, Faure J, Tóth C, van Tilborg J et al. Observation of terahertz emission from a laser-plasma accelerated electron bunch crossing a plasma-vacuum boundary. Phys Rev Lett 91, 074802 (2003). doi: 10.1103/PhysRevLett.91.074802

    CrossRef Google Scholar

    [180] Schroeder CB, Esarey E, van Tilborg J, Leemans WP. Theory of coherent transition radiation generated at a plasma-vacuum interface. Phys Rev E 69, 016501 (2004). doi: 10.1103/PhysRevE.69.016501

    CrossRef Google Scholar

    [181] Yang X, Brunetti E, Jaroszynski DA. High-energy coherent terahertz radiation emitted by wide-angle electron beams from a laser-wakefield accelerator. New J Phys 20, 043046 (2018). doi: 10.1088/1367-2630/aab74d

    CrossRef Google Scholar

    [182] Liao GQ, Li YT, Zhang YH, Liu H, Ge XL et al. Demonstration of coherent terahertz transition radiation from relativistic laser-solid interactions. Phys Rev Lett 116, 205003 (2016). doi: 10.1103/PhysRevLett.116.205003

    CrossRef Google Scholar

    [183] Liao GQ, Li YT, Liu H, Scott GG, Neely D et al. Multimillijoule coherent terahertz bursts from picosecond laser-irradiated metal foils. Proc Natl Acad Sci USA 116, 3994–3999 (2019). doi: 10.1073/pnas.1815256116

    CrossRef Google Scholar

    [184] Fedeli L, Formenti A, Cialfi L, Sgattoni A, Cantono G et al. Structured targets for advanced laser-driven sources. Plasma Phys Control Fusion 60, 014013 (2018). doi: 10.1088/1361-6587/aa8a54

    CrossRef Google Scholar

    [185] Mondal S, Wei Q, Ding WJ, Hafez HA, Fareed MA et al. Aligned copper nanorod arrays for highly efficient generation of intense ultra-broadband THz pulses. Sci Rep 7, 40058 (2017). doi: 10.1038/srep40058

    CrossRef Google Scholar

    [186] Li C, Zhou ML, Ding WJ, Du F, Liu F et al. Effects of laser-plasma interactions on terahertz radiation from solid targets irradiated by ultrashort intense laser pulses. Phys Rev E 84, 036405 (2011). doi: 10.1103/PhysRevE.84.036405

    CrossRef Google Scholar

    [187] Li C, Cui YQ, Zhou ML, Du F, Li YT et al. Role of resonance absorption in terahertz radiation generation from solid targets. Opt Express 22, 11797–11803 (2014). doi: 10.1364/OE.22.011797

    CrossRef Google Scholar

    [188] Jin Z, Zhuo HB, Nakazawa T, Shin JH, Wakamatsu S et al. Highly efficient terahertz radiation from a thin foil irradiated by a high-contrast laser pulse. Phys Rev E 94, 033206 (2016). doi: 10.1103/PhysRevE.94.033206

    CrossRef Google Scholar

    [189] Woldegeorgis A, Kurihara T, Almassarani M, Beleites B, Grosse R et al. Multi-MV/cm longitudinally polarized terahertz pulses from laser–thin foil interaction. Optica 5, 1474–1477 (2018). doi: 10.1364/OPTICA.5.001474

    CrossRef Google Scholar

    [190] Déchard J, Debayle A, Davoine X, Gremillet L, Bergé L. Terahertz pulse generation in underdense relativistic plasmas: From photoionization-induced radiation to coherent transition radiation. Phys Rev Lett 120, 144801 (2018). doi: 10.1103/PhysRevLett.120.144801

    CrossRef Google Scholar

    [191] Déchard J, Davoine X, Bergé L. THz generation from relativistic plasmas driven by near-to far-infrared laser pulses. Phys Rev Lett 123, 264801 (2019). doi: 10.1103/PhysRevLett.123.264801

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(23)

Tables(1)

Article Metrics

Article views(6029) PDF downloads(1447) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint