Abstract

Previous abstract Back to issue content Next abstract
Symmetry: Culture and Science
Volume 33, Number 3, pages 289-301 (2022)
https://doi.org/10.26830/symmetry_2022_3_289

FIBONACCI SEQUENCES IN ACOUSTICS

Marina Voinova1,2

1 Department of Physics, Chalmers University of Technology, Fysikgården 1, Gothenburg 41296, Sweden
2 Biosfär, Biosfärområde Vänerskärgården med Kinnekulle https://vanerkulle.org/, Götene, Sweden.
Email: m.voinova@gmail.com

Abstract: A minireview on innovative structures based on Fibonacci sequences in acoustics is presented.

Keywords: Fibonacci sequences, symmetry, resonance, acoustics, quasiperiodic

References:
Acoustic metamaterials: Negative refraction, imaging, lensing, and cloaking (2013) (R.V. Craster, S. Guenneau Eds.) Springer Series in Materials Science, vol. 166. https://doi.org/10.1007/978-94-007-4813-2_1

Alami, M., Quotane, I., El Boudouti, E. H., and Djafari-Rouhani, B. (2019) Transverse acoustic waves in piezoelectric-metallic Fibonacci multilayers, Materials Today: Proceedings, 13, 541–548. https://doi.org/10.1016/j.matpr.2019.04.011

Aliev, G.N., and Goller, B. (2014) Quasi-periodic Fibonacci and periodic one-dimensional hypersonic phononic crystals of porous silicon: Experiment and simulation, Journal of Applied Physics, 116, 094903 (1-10). https://doi.org/10.1063/1.4894620

Anderson, P.W. (1958) Absence of diffusion in certain random lattices, Physical Review 109, 1492 - 1505. https://doi.org/10.1103/PhysRev.109.1492

Bacigalupo, A., De Bellis, M.L., and Vasta, M. (2022) Design of tunable hierarchical waveguides based on Fibonacci-like microstructure, International Journal of Mechanical Sciences, 224, 107280. https://doi.org/10.1016/j.ijmecsci.2022.107280

Bajema, K., and Merlin, R. (1987-I) Raman scattering by acoustic phonons in Fibonacci GaAs-AlAs superlattices, Physical Review (Rapid Communications), 36, 4555-4557. https://doi.org/10.1103/PHYSREVB.36.4555

Basirjafari, S. (2020) Innovative solution to enhance the Helmholtz resonator sound absorber in low-frequency noise by nature inspiration, Journal of Environmental Health Science and Engineering,18, 873–882. https://doi.org/10.1007/s40201-020-00512-w

Bursill, L.A., Lin, P.J. (1985) Penrose tiling observed in a quasi-crystal, Nature, 316, 50 – 51. https://doi.org/10.1038/316050a0

Chen, Z., Xue, C., Fan, L., Zhang, S., Li, X.-J., Zhang, H., and Din, J. (2016) A tunable acoustic metamaterial with double-negativity driven by electromagnets, Scientific Reports, 6, 30254. https://doi.org/10.1038/srep30254.

Crystals of golden proportions. https://www.nobelprize.org/uploads/2018/06/popular-chemistryprize2011.pdf

Darvas, G. (2007) Symmetry; Cultural-Historical and Ontological Aspects of Science–Arts Relations; The Natural and Man-made World in an Interdisciplinary Approach, Basel: Birkhäuser Verlag, xi + 508 pp. https://doi.org/10.1007/978-3-7643-7555-3

Dürer, A. (1528) Vier Bücher von menschlicher Proportion, [Four Books on Human Proportion, in German].

Diehl, R.D., Ledieu, J., Ferralis, N., Szmodis, A.W., and McGrath, R. (2003) Low-energy electron diffraction from quasicrystal surfaces, Journal of Physics: Condensed Matter, 15, R63–R81. https://doi.org/10.1088/0953-8984/15/3/201

El Boudouti, E.H., Djafari-Rouhani, B., Akjouj, A., and Dobrzynski, L. (2009) Acoustic waves in solid and fluid layered materials, Surface Science Reports, 64, 471–594. https://doi.org/10.1016/j.surfrep.2009.07.005

El Boudouti, E.H., Mrabti, T., Al-Wahsh, H., Djafari-Rouhani, B., Akjouj, A., and Dobrzynski, L. (2008) Transmission gaps and Fano resonances in an acoustic waveguide: analytical model, Journal of Physics: Condensed Matter, 20, 255212 (10pp). https://doi.org/10.1088/0953-8984/20/25/255212

Fano, U. (1961) Effects of configuration interaction on intensities and phase shifts, Physical Review, 124, 1866–1878. https://doi.org/10.1103/PhysRev.124.1866

Fiorillo, A.S., Pullano, S.A., Bianco, M.G., and Critello, C.D. (2020) Ultrasonic transducers shaped in Archimedean and Fibonacci spiral: a comparison, Sensors, 20, 2800, 1–11. https://doi.org/10.3390/s20102800.

Fernández-Alvarez, L., and Velasco, V. R. (1998) Sagittal elastic waves in Fibonacci superlattices, Physical Review B, 57, 14141 – 14147. https://doi.org/10.1103/PhysRevB.57.14141

Fok, L., and Zhang, X. (2011) Negative acoustic index metamaterial, Physical Review B, 83, 214304, 1-8). https://doi.org/10.1103/PhysRevB.83.214304

Gei M., Bigoni, D., Movchan, A.B., and Bacca, M. (2013) Band-Gap properties of prestressed structures, in: Acoustic metamaterials. Negative refraction, imaging, lensing, and cloaking, Springer Series in Materials Science, pp. 61-82. https://doi.org/10.1007/978-94-007-4813-2

Gredeskul S.A., Kivshar, Y.S., Asatryan, A.A., Bliokh, K.Y., Bliokh, Y.P., Freilikher, V.D., and Shadrivov, I. V. (2012) Anderson localization in metamaterials and other complex media (Review Article), Low Temperature Physics, 38, 570 – 602. https://doi.org/10.1063/1.4736617

Hladky-Hennion, A. C., Vasseur, J. O., Degraeve, S., Granger, C., and de Billy, M. (2013) Acoustic wave localization in one-dimensional Fibonacci phononic structures with mirror symmetry, Journal of Applied Physics, 113, 154901, 1-7. https://doi.org/10.1063/1.4801890

Hu, H., Strybulevich, A., Page, J.H., Skipetrov, S.E., and Van Tiggelen, B.A. (2008) Localization of ultrasound in a three-dimensional elastic network, Nature Physics, 4, 945–948. https://doi.org/10.1038/nphys1101.

Joe, Y.S., Satanin, A.M., and Kim, C.S. (2006) Classical analogy of Fano resonators, Physical Scripta, 74, 259-266. https://doi.org/10.1088/0031-8949/74/2/020

Kosevich, Y., Feher, A., Syrkin, E. (2008) Resonance absorption, reflection, transmission of phonons and heat transfer through interface between two solids, Low Temperature Physics, 34, 725-733. https://doi.org/10.1063/1.2957011

Kramer, J. (1973) The Fibonacci series in twentieth-century music, Journal of Music Theory, 17, 1, 110-148. https://doi.org/10.2307/843120

Kushwaha, M. S., Halevi, P., Dobrzynski, L., and Djafari-Rouhani, B. (1993) Acoustic band structure of periodic elastic composites, Physical Review Letters, 71, 2022–2025. https://doi.org/10.1103/PhysRevLett.71.2022

Levine, D., and Steinhardt, P.J. (1984) Quasicrystals: A new class of ordered structures, Physical Review Letters, 53, 2477–2480. https://doi.org/10.1103/PhysRevLett.53.2477

Li, J., Liu, S., Huang, C., Li, T., Wang, Q., and Zhu, Y. (2008) Light transmission through Fibonacci and periodic sub-wavelength slit arrays, Journal of Optics A: Pure and Applied Optics, 10, 10, 075202. https://doi.org/10.1088/1464-4258/10/7/075202

Limonov, M.F., Rybin, M.V., Poddubny, A.N., and Kivshar, Y.S. (2017) Fano resonances in photonics, Nature Photonics, 11, 543 – 554. https://doi.org/10.1038/NPHOTON.2017.142

Lin, C., Hollister, L.S., MacPherson, G.J., Bindi, L., Ma, C., Andronicos, L.C., and Steinhardt, P.J.(2017) Evidence of cross-cutting and redox reaction in Khatyrka meteorite reveals metallic-Al minerals formed in outer space, Nature Scientific Communications, 7, 1637 (1-14). https://doi.org/10.1038/s41598-017-01445-5

Lucklum, R., and Li, J. (2009) Phononic crystals for liquid sensor applications, Measurement Science and Technology, 20, 124014 (12 p.). https://doi.org/10.1088/0957-0233/20/12/124014

Lučić, N. M., D. M. Jović Savić, A. Piper, D. Ž. Grujić, J. M. Vasiljević, D. V. Pantelić, B. M. Jelenković, and D. V. Timotijević (2015) Light propagation in quasi-periodic Fibonacci waveguide arrays, Journal of the Optical Society of America B, 32, 1510-1513. https://doi.org/10.1364/JOSAB.32.001510

Mackay, A. (1982) Crystallography and the Penrose Pattern, Physica A: Statistical Mechanics and Its Applications, 114, 609-613. https://doi.org/10.1016/0378-4371(82)90359-4

Macon, L., Desideri, J.P., and Sornette, D. (1991) Localization of surface acoustic waves in a one-dimensional quasicrystal, Physical Review B, 44, 6755–6772. https://doi.org/10.1103/physrevb.44.6755

Merlin, R., Bajema, K., Clarke, R., Juang, F.-Y., and Bhattacharya, P. K. (1985) Quasiperiodic GaAs-AIAs Heterostructures, Physical Review Letters, 55, 1768-1770. https://doi.org/10.1103/PhysRevLett.55.1768

Miroshnichenko, A.E., Flach, S., and Kivshar, Y.S. (2010) Fano resonances in nanoscale structures, Reviews of Modern Physics, 82, 2257–2298. https://doi.org/10.1103/RevModPhys.82.2257

Nava, J., Tagüeña-Martínez, del Río, J.A., and Naumis, G.G. (2009) Perfect light transmission in Fibonacci arrays of dielectric multilayers, Journal of Physics: Condensed Matter, 21,155901 (7pp). https://doi.org/10.1088/0953-8984/21/15/155901

Negahdari, H., Javadpour, S., and Moattar, F. (2019) Designing, constructing, and testing of a new generation of sound barriers, Journal of Environmental Health Science and Engineering, 17, 507–527. https://doi.org/10.1007/s40201-019-00357-y

Nguyen, D.T., Nolan, D.A., and Borelli, N.F. (2019) Localized quantum walks in quasi-periodic Fibonacci arrays of waveguides, Optics Express, 27, 886. https://doi.org/10.1364/OE.27.000886

Quotane, I., El Boudouti, E.H., Djafari-Rouhani, B., El Hassouani, Y., and Velasco, V.R. (2015) Bulk and surface acoustic waves in solid-fluid Fibonacci layered materials, Ultrasonics, 61, 40 – 51. http://dx.doi.org/10.1016/j.ultras.2015.03.004

Saffar, S. (2020) Enhancement of sound absorber by multi-area Helmholtz resonators array based on Fibonacci sequence, Iranian Journal of Mechanical Engineering, 22, 54-73. https://doi.org/10.30506/jmee.2020.121751.1226.

Shechtman, D., Blech, I., Gratias, D., and Cahn, J.W. (1984) Metallic phase with long-range orientational order and no translational symmetry, Physical Review Letters, 53, 1951–1954. https://doi.org/10.1103/PhysRevLett.53.1951

Sigalas, M.M., and Economou, N.N. (1993) Band structure of elastic waves in two dimensional systems, Solid State Communications, 86, 141-143. https://doi.org/10.1016/0038-1098(93)90888-T

Taleb, F., and Darbari, S. (2019) Tunable locally resonant surface-acoustic-waveguiding behavior by acoustoelectric interaction in ZnO-based phononic crystal, Physical Review Applied, 11, 024030, 1-15. https://doi.org/10.1103/PhysRevApplied.11.024030

The discovery of quasicrystals; Scientific Background on the Nobel Prize in Chemistry 2011. https://www.nobelprize.org/uploads/2018/06/advanced-chemistryprize2011-1.pdf

Van Gend, R. (2014) The Fibonacci sequence and the golden ratio in music, Notes on Number Theory and Discrete Mathematics, 20, 72–77.

Vitruvius, P. (1960) The Ten Books on Architecture [translated by Morris H. Morgan, 1914] New York: Dover Publ.

Wang, P.-Y., and Mason, T.G. (2018) A Brownian quasi-crystal of pre-assembled colloidal Penrose tiles, Nature, 561, 94 – 99. https://doi.org/10.1038/s41586-018-0464-9

Weaver, R.L. (1993) Anomalous diffusivity and localization of classical waves in disordered media: The effect of dissipation, Physical Review B, 43, 1077. https://doi.org/10.1103/PhysRevB.47.1077

Yan, Z., and Yang, X. (2022) Band structure analysis of SH wave propagating in nanoscale layered metamaterial structures, Frontiers in Materials, 9, Article 842073. https://doi.org/10.3389/fmats.2022.842073

Zaki, S.E., and Basyooni, M. (2022) Ultra-sensitive gas sensor based fano resonance modes in periodic and Fibonacci quasi-periodic Pt/PtS2 structures, Scientific Reports, 12, 9759. https://doi.org/10.1038/s41598-022-13898-4

Zaki, S.E., Mehaney, A., Hassanein, H.M., and Aly, A.H. (2020) Fano resonance based defected 1D phononic crystal for highly sensitive gas sensing applications, Scientific Reports, 10, 17979. https://doi.org/10.1038/s41598-020-75076-8

Previous abstract Back to issue content Next abstract