Journal Home > Volume 2 , Issue 1

In this work, two heterometallic clusters, namely TiIV4MoV4MoVI2O16(OCH3)16 (1) and TiIV4MoV4O10(OC2H5)14 (C6H5COO)2 (2) are successfully constructed to improve the solar absorption and performance of titanium oxo clusters (TOCs). The 1 and 2 structures are determined well by single-crystal X-ray diffraction analysis and found to feature the common presence of Mo–Mo interactions. The solid-state UV–vis absorption studies indicate that these structures exhibit enhanced visible-light absorption and significantly reduced optical band gaps, which should be dominantly attributed to the introduction of electron-rich Mo–Mo pairs as heterometals. This work demonstrates an effective strategy of regulating the light absorption behaviors of TOCs by importing electron-rich heterometals.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Heterometallic Mo–Ti oxo clusters with metal–metal bonds: Preparation and visible-light absorption behaviors

Show Author's information Weizhou Chen1,2Xiaofeng Yi1 ( )Jian Zhang1Lei Zhang1 ( )
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
College of Chemistry, Fuzhou University, Fuzhou 350108, China

Abstract

In this work, two heterometallic clusters, namely TiIV4MoV4MoVI2O16(OCH3)16 (1) and TiIV4MoV4O10(OC2H5)14 (C6H5COO)2 (2) are successfully constructed to improve the solar absorption and performance of titanium oxo clusters (TOCs). The 1 and 2 structures are determined well by single-crystal X-ray diffraction analysis and found to feature the common presence of Mo–Mo interactions. The solid-state UV–vis absorption studies indicate that these structures exhibit enhanced visible-light absorption and significantly reduced optical band gaps, which should be dominantly attributed to the introduction of electron-rich Mo–Mo pairs as heterometals. This work demonstrates an effective strategy of regulating the light absorption behaviors of TOCs by importing electron-rich heterometals.

Keywords: structural regulation, heterometallic complexes, metal oxo clusters, metal–metal bond, visible-light absorption

References(25)

[1]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[2]

Kment, S.; Riboni, F.; Pausova, S.; Wang, L.; Wang, L. Y.; Han, H.; Hubicka, Z.; Krysa, J.; Schmuki, P.; Zboril, R. Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting-superior role of 1D nanoarchitectures and of combined heterostructures. Chem. Soc. Rev. 2017, 46, 3716–3769.

[3]

Chen, X. B.; Liu, L.; Huang, F. Q. Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 2015, 44, 1861–1885.

[4]

Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.

[5]

Fang, W. H.; Zhang, L.; Zhang, J. Synthetic strategies, diverse structures and tuneable properties of polyoxo-titanium clusters. Chem. Soc. Rev. 2018, 47, 404–421.

[6]

Rozes, L.; Sanchez, C. Titanium oxo-clusters: Precursors for a Lego-like construction of nanostructured hybrid materials. Chem. Soc. Rev. 2011, 40, 1006–1030.

[7]

Liu, Y. J.; Fang, W. H.; Zhang, L.; Zhang, J. Recent advances in heterometallic polyoxotitanium clusters. Coord. Chem. Rev. 2020, 404, 213099.

[8]

Gao, M. Y.; Wang, F.; Gu, Z. G.; Zhang, D. X.; Zhang, L.; Zhang, J. Fullerene-like polyoxotitanium cage with high solution stability. J. Am. Chem. Soc. 2016, 138, 2556–2559.

[9]

Fan, X.; Wang, J. H.; Wu, K. F.; Zhang, L.; Zhang, J. Isomerism in titanium-Oxo clusters: Molecular anatase model with atomic structure and improved photocatalytic activity. Angew. Chem., Int. Ed. 2019, 58, 1320–1323.

[10]

Zheng, H.; Du, M. H.; Lin, S. C.; Tang, Z. C.; Kong, X. J.; Long, L. S.; Zheng, L. S. Assembly of a wheel-like Eu24Ti8 cluster under the guidance of high-resolution electrospray ionization mass spectrometry. Angew. Chem., Int. Ed. 2018, 57, 10976–10979.

[11]

Wang, C.; Liu, C.; Li, L. J.; Sun, Z. M. Synthesis, crystal structures, and photochemical properties of a family of heterometallic titanium Oxo clusters. Inorg. Chem. 2019, 58, 6312–6319.

[12]

Timco, G. A.; Fernandez, A.; Kostopoulos, A. K.; Muryn, C. A.; Pritchard, R. G.; Strashnov, I.; Vitorica-Yrezebal, I. J.; Whitehead, G. F. S.; Winpenny, R. E. P. An extensive family of heterometallic titanium(IV)-metal(III) rings with structure control through templates. Angew. Chem., Int. Ed. 2017, 56, 13629–13632.

[13]

Fan, X.; Chen, S.; Zhang, L.; Zhang, J. Protection of Ag clusters by metal-Oxo modules. Chem.—Eur. J. 2021, 27, 15563–15570.

[14]

Zhou, S. Y.; Li, C. P.; Fu, H.; Cao, J.; Zhang, J.; Zhang, L. Lead-doped titanium-oxo clusters as molecular models of perovskite-type PbTiO3 and electron-transport material in solar cells. Chem.—Eur. J. 2020, 26, 6894–6898.

[15]

Yang, L.; Shu, X. P.; Fu, M. Y.; Wang, H. Y.; Zhu, Q. Y.; Dai, J. Molybdenum-titanium oxo-cluster, an efficient electrochemical catalyst for the facile preparation of black titanium dioxide film. Dalton Trans. 2020, 49, 10516–10522.

[16]

Uchiyama, H.; Puthusseri, D.; Grins, J.; Gribble, D.; Seisenbaeva, G. A.; Pol, V. G.; Kessler, V. G. Single-source alkoxide precursor approach to titanium molybdate, TiMoO5, and its structure, electrochemical properties, and potential as an anode material for alkali metal ion batteries. Inorg. Chem. 2021, 60, 3593–3603.

[17]

Eslava, S.; Goodwill, B. P. R.; McPartlin, M.; Wright, D. S. Extending the family of titanium heterometallic-oxo-alkoxy cages. Inorg. Chem. 2011, 50, 5655–5662.

[18]

du Peloux, C.; Mialane, P.; Dolbecq, A.; Marrot, J.; Sécheresse, F. MoV/pyrophosphate polyoxometalate: An inorganic cryptate. Angew. Chem., Int. Ed. 2002, 41, 2808–2810.

[19]

du Peloux, C.; Dolbecq, A.; Mialane, P.; Marrot, J.; Rivière, E.; Sécheresse, F. A new family of layered molybdenum(V) cobalto-phosphates built up of [H14(Mo16O32)Co16(PO4)24(H2O)20]10– wheels. Angew. Chem., Int. Ed. 2001, 40, 2455–2457.

[20]

Ren, C. M.; Lu, Z. H.; Luo, B. L.; Yi, X. F.; Lin, L. F.; Xu, L. Deeply reduced empty Keggin clusters [MoIVxMVI12−xO40−xpyx] (x = 3, 6; M = Mo, W; py = pyridine): Synthesis, structures, and Lewis field catalysis. Inorg. Chem. Front. 2021, 8, 5178–5185.

[21]

Gao, M. Y.; Sun, Y. Y.; Wang, F.; Zhang, J.; Zhang, L. Synthesis and structure of a series of Ti6-oxo clusters functionalized by in situ esterified dicarboxylate ligands. Chin. J. Chem. 2021, 39, 1259–1264.

[22]

Rodriguez-Albelo, L. M.; Ruiz-Salvador, A. R.; Sampieri, A.; Lewis, D. W.; Gómez, A.; Nohra, B.; Mialane, P.; Marrot, J.; Sécheresse, F.; Mellot-Draznieks, C. et al. Zeolitic polyoxometalate-based metal-organic frameworks (Z-POMOFs): Computational evaluation of hypothetical polymorphs and the successful targeted synthesis of the redox-active Z-POMOF1. J. Am. Chem. Soc. 2009, 131, 16078–16087.

[23]

Nohra, B.; El Moll, H.; Rodriguez Albelo, L. M.; Mialane, P.; Marrot, J.; Mellot-Draznieks, C.; O'Keeffe, M.; Ngo Biboum, R.; Lemaire, J.; Keita, B. et al. Polyoxometalate-based metal organic frameworks (POMOFs): Structural trends, energetics, and high electrocatalytic efficiency for hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 13363–13374.

[24]

Manos, M. J.; Woollins, J. D.; Slawin, A. M. Z.; Kabanos, T. A. Polyoxomolybdenum(V) sulfite complexes: Synthesis, structural, and physical studies. Angew. Chem., Int. Ed. 2002, 41, 2801–2805.

[25]

Liu, J. X.; Gao, M. Y.; Fang, W. H.; Zhang, L.; Zhang, J. Bandgap engineering of titanium-oxo clusters: Labile surface sites used for ligand substitution and metal incorporation. Angew. Chem., Int. Ed. 2016, 55, 5160–5165.

File
0013_ESM.pdf (970.8 KB)
0013_ESM_Ti4Mo4.cif (594.2 KB)
0013_ESM_Ti4Mo4_checkcif.pdf (128.3 KB)
0013_ESM_Ti4Mo6.cif (2.8 MB)
0013_ESM_Ti4Mo6_checkcif.pdf (148.7 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 28 July 2022
Revised: 23 September 2022
Accepted: 19 October 2022
Published: 02 December 2022
Issue date: March 2023

Copyright

© The Author(s) 2023. Polyoxometalates published by Tsinghua University Press.

Acknowledgements

Research reported in this publication was supported by the National Natural Science Foundation of China (Nos. 21901241 and 21922111) and the Natural Science Foundation of Fujian Province (No. 2020J01117).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return