Vol. 66
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-07-14
Magnetically Tunable Ferrite-Dielectric Left-Handed Metamaterial
By
Progress In Electromagnetics Research C, Vol. 66, 21-28, 2016
Abstract
In this paper, a magnetically tunable metamaterial is proposed and studied. The metamaterial is based on the combination of ferrite sheets and dielectric rods. The tunable property is originated from the ferromagnetic resonance and electric response of dielectric rods. The retrieved electromagnetic parameters and transmission characteristic showed that by simultaneously inspiring the ferromagnetic resonance and electric resonance, composite metamaterial can possess double-negative band in the resonant state. Moreover, this band was tunable by adjusting applied magnetic fields. The simulations and experiments verified that the composite metamaterial clearly displayed a tunable feature. The proposed method is simple in designing tunable metamaterials.
Citation
Bai Du, Zhuo Xu, Jun Wang, and Song Xia, "Magnetically Tunable Ferrite-Dielectric Left-Handed Metamaterial," Progress In Electromagnetics Research C, Vol. 66, 21-28, 2016.
doi:10.2528/PIERC16042806
References

1. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons is metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773, 1996.
doi:10.1103/PhysRevLett.76.4773

2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075, 1999.
doi:10.1109/22.798002

3. Smith, D. R., W. J. Padilla, D. C. Vier, et al. "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184, 2000.
doi:10.1103/PhysRevLett.84.4184

4. Chen, H. S., L. X. Ran, J. T. Huangfu, et al. "Left-handed materials composed of only S-shaped resonators," Physical Review B, Vol. 70, 057605, 2004.
doi:10.1103/PhysRevE.70.057605

5. Chen, H. S., L. X. Ran, J. T. Huangfu, et al. "Negative refraction of a combined double S-shaped resonators," Applied Physics Letters, Vol. 86, 151909, 2005.
doi:10.1063/1.1897045

6. Zhang, F. L., Q. Zhao, Y. H. Liu, et al. "Behaviour of hexagon split ring resonators and left-handed metamaterials," Chinese Physics Letters, Vol. 21, 1330-1332, 2004.
doi:10.1088/0256-307X/21/7/041

7. Zhao, Q., et al. "Experimental demonstration of isotropic negative permeability in a threedimensional dielectric composite," Phys. Rev. Lett., Vol. 101, 027402, 2008.
doi:10.1103/PhysRevLett.101.027402

8. Kim, J. and A. Gopinath, "Simulation of a metamaterial containing cubic high dielectric resonators," Phys. Rev. B, Vol. 76, 115126, 2007.
doi:10.1103/PhysRevB.76.115126

9. He, Y., P. He, S. D. Yoon, et al. "Tunable negative index metamaterials using yttrium iron garnet," J. Magn. Magn. Mater., Vol. 313, 187, Vittoria, 2007.
doi:10.1016/j.jmmm.2006.12.031

10. Kang, L., Q. Zhao, H. Zhao, and J. Zhou, "Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires," Opt. Express, Vol. 16, 17269, 2008.
doi:10.1364/OE.16.017269

11. Ustinov, A. B., V. S. Tiberkevich, G. Srinivasan, et al. "Electric field tunable ferrite-ferroelectric hybrid wave microwave resonators: Experiment and theory," Journal of Applied Physics, Vol. 100, 093905, 2006.
doi:10.1063/1.2372575

12. Zhao, Q., B. Du, L. Kang, et al. "Tunable negative permeability in an isotropic dielectric composite," Applied Physics Letter, Vol. 92, 051106, 2008.
doi:10.1063/1.2841811

13. He, G. H., R. X. Wu, Y. Poo, et al. "Magnetically tunable double-negative material composed of ferrite-dielectric and metallic mesh," Journal of Applied Physics, Vol. 107, 093522, 2010.
doi:10.1063/1.3359718

14. Zhang, F., L. Kang, Q. Zhao, et al. "Magnetic and electric coupling effects of dielectric metamaterial," New Journal of Physics, Vol. 14, 33031, 2012.
doi:10.1088/1367-2630/14/3/033031

15. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physics Review B, Vol. 65, 195104, 2002.
doi:10.1103/PhysRevB.65.195104

16. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Trans. Antennas Propag., Vol. 51, 1516, 2003.
doi:10.1109/TAP.2003.813622

17. Chen, X., T. M. Grzegorczyk, et al. "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, 016608, 2004.
doi:10.1103/PhysRevE.70.016608

18. Zhao, H., J. Zhou, L. Kang, et al. "Tunable two-dimensional left-handed material consisting of ferrite rods and metallic wires," Optics Express, Vol. 17, 13373-13380, 2009.
doi:10.1364/OE.17.013373

19. Wang, J., Z. Xu, and Z. Yu, "Experimental realization of all-dielectric composite cubes/rods lefthanded metamaterial," Journal of Applied Physics, Vol. 109, 084918, 2011.
doi:10.1063/1.3575326

20. Du, B., J. Wang, Z. Xu, et al. "Band split in multiband all-dielectric left-handed metamaterials," Journal of Applied Physics, Vol. 115, 234104, 2014.
doi:10.1063/1.4883962