Welcome to Francis Academic Press

Frontiers in Medical Science Research, 2023, 5(5); doi: 10.25236/FMSR.2023.050511.

Advances in miRNA research in bone tissue engineering vascularization

Author(s)

Xiayidan Aihemaitijiang, Tiantian Zhu, Wuxikun Wuran, Xing Wang

Corresponding Author:
Xing Wang
Affiliation(s)

Department of Prosthodontics, the First Affiliated Hospital (Affiliated Stomatological Hospital) of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830054, China

Abstract

Vascularization is is a prerequisite for bone tissue engineering. Inflammation and poor survival environment after bone tissue-engineered transplantation often affect the final treatment outcome due to early inadequate blood supply. In recent years, the importance of miRNAs in regulating angiogenesis and arteriogenesis has been recognized. miRNAs are a class of small non-coding RNAs consisting of 21-25 nucleotides. miRNAs are abundant in the vascular system and play an important regulatory role in the vascularization of stem cells toward differentiation. In this paper, we will review the importance of angiogenesis in bone tissue engineering and the role of miRNAs in tissue-engineered bone angiogenesis.

Keywords

miRNA; vascularization; bone tissue engineering

Cite This Paper

Xiayidan Aihemaitijiang, Tiantian Zhu, Wuxikun Wuran, Xing Wang. Advances in miRNA research in bone tissue engineering vascularization. Frontiers in Medical Science Research (2023) Vol. 5, Issue 5: 74-78. https://doi.org/10.25236/FMSR.2023.050511.

References

[1] Schott NG, Friend NE, Stegemann JP. Coupling Osteogenesis and Vasculogenesis in Engineered Orthopedic Tissues[J]. Tissue Eng Part B Rev. 2021; 27(3):199-214. 

[2] Beavers KR, Nelson CE, Duvall CL. MiRNA inhibition in tissue engineering and regenerative medicine[J]. Adv Drug Deliv Rev. 2015; 88:123-137. 

[3] Zhou Y, Zhu Y, Zhang L, et al. Human Stem Cells Overexpressing miR-21 Promote Angiogenesis in Critical Limb Ischemia by Targeting CHIP to Enhance HIF-1α Activity[J]. Stem Cells. 2016; 34(4): 924-934. 

[4] Zhu Jian. The studies on the role of miR-9-5p in regulating endothelial progenitor cells in venous thrombosis [D]. SOOCHOW UNIVERSITY, 2021

[5] Wang Y, Xi Y, Han F, et al. Vascularized composite allograft rejection is delayed by infusion of IFN-γ-conditioned BMSCs through upregulating PD-L1 [J]. Cell Tissue Res. 2019; 376(2):211-220. 

[6] Zhang Y, Ren SC. Effects of scaffolds on angiogenic microenvironment and its mechanism [J]. Zhongguo Zuzhi Gongcheng Yanjiu. 2023; 27(21):3391-3397. 

[7] Zhao L, Ma S, Pan Y, et al. Functional Modification of Fibrous PCL Scaffolds with Fusion Protein VEGF-HGFI Enhanced Cellularization and Vascularization [J]. Adv Healthc Mater. 2016; 5(18): 2376- 2385. 

[8] Pauty J, Usuba R, Cheng IG, et al. A Vascular Endothelial Growth Factor-Dependent Sprouting Angiogenesis Assay Based on an In Vitro Human Blood Vessel Model for the Study of Anti-Angiogenic Drugs [J]. EBio Medicine. 2018; 27:225-236. 

[9] Hosaka K, Yang Y, Nakamura M, et al. Dual roles of endothelial FGF-2-FGFR1-PDGF-BB and perivascular FGF-2-FGFR2-PDGFRβ signaling pathways in tumor vascular remodeling [J]. Cell Discov. 2018; 4:3. Published 2018 Jan 16. 

[10] Zhao Dd, Lin Kl. Application of multicellular construction of vascularized tissue engineered bone in bone repair[J]. Zhongguo Zuzhi Gongcheng Yanjiu. 2022; 26(27):4386-4392. 

[11] Roux BM, Vaicik MK, Shrestha B, et al. Induced Pluripotent Stem Cell-Derived Endothelial Networks Accelerate Vascularization But Not Bone Regeneration [J]. Tissue Eng Part A. 2021; 27(13-14): 940-961. 

[12] Shi R, Huang Y, Ma C, Wu C, Tian W. Current advances for bone regeneration based on tissue engineering strategies[J]. Front Med. 2019; 13(2):160-188. 

[13] Bobbert FSL, Zadpoor AA. Effects of bone substitute architecture and surface properties on cell response, angiogenesis, and structure of new bone[J]. Mater Chem B. 2017; 5(31):6175-6192. 

[14] Kim SS, Utsunomiya H, Koski JA, et al. Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels [J]. Ann Surg. 1998; 228(1):8-13. 

[15] Li Gz, Chen R, Jia Hl, Ren Ll. Research progress of gene therapy for vascularization of tissue engineering[J]. Zhongguo Zuzhi Gongcheng Yanjiu. 2022; 26(28):4569-4574. 

[16] Mori MA, Ludwig RG, Garcia-Martin R, Brandão BB, Kahn CR. Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease[J]. Cell Metab. 2019; 30(4):656-673. 

[17] Metzinger V, Metzinger L. miR-223 and other miRNA's evaluation in chronic kidney disease: Innovative biomarkers and therapeutic tools [J]. Noncoding RNA Res. 2019; 4(1):30-35. Published 2019 Jan 23. 

[18] Ling S, Luo X, Lv B, et al. Effect of miR-144-3p-Targeted Regulation of PTEN on Proliferation, Apoptosis, and Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells under Stretch[J]. Emerg Med Int. 2022; 2022:5707504. Published 2022 May 10. 

[19] Hong Y, He H, Jiang G, et al. miR-155-5p inhibition rejuvenates aged mesenchymal stem cells and enhances cardioprotection following infarction [J]. Aging Cell. 2020; 19(4):e13128. 

[20] Ciui B, Jambrec D, Sandulescu R, et al. Bioelectrochemistry for miRNA detection [J]. Current Opinion in Electrochemistry, 2017, 5(1). 

[21] Yang WJ, Yang DD, Na S, Sandusky GE, Zhang Q, Zhao G. Dicer is required for embryonic angiogenesis during mouse development [J]. Biol Chem. 2005; 280(10):9330-9335. 

[22] Henry TD, Annex BH, McKendall GR, et al. The VIVA trial: Vascular endothelial growth factor in Ischemia for Vascular Angiogenesis[J]. Circulation. 2003; 107(10):1359-1365. 

[23] Okada H, Takemura G, Kosai K, et al. Combined therapy with cardioprotective cytokine administration and antiapoptotic gene transfer in postinfarction heart failure[J]. Am J Physiol Heart Circ Physiol. 2009; 296(3):H616-H626. 

[24] Tian Zhongkui, et al. Effect of miR-21 in promoting angiogenesis differentiation of ·472· umbilical cord blood mesenchymal stem cells in vitro [J]. Shanghai Kouqiang Yixue. 2017, 26(5): 471-475. 

[25] Kir D, Schnettler E, Modi S, Ramakrishnan S. Regulation of angiogenesis by microRNAs in cardiovascular diseases[J]. Angiogenesis. 2018; 21(4):699-710. 

[26] Li Y, Fan L, Liu S, et al. The promotion of bone regeneration through positive regulation of angiogenic-osteogenic coupling using microRNA-26a [J]. Biomaterials. 2013; 34(21):5048-5058. 

[27] Ahlfeld T, Akkineni AR, Förster Y, et al. Design and Fabrication of Complex Scaffolds for Bone Defect Healing: Combined 3D Plotting of a Calcium Phosphate Cement and a Growth Factor-Loaded Hydrogel [J]. Ann Biomed Eng. 2017; 45(1):224-236. 

[28] Zuo Xh, Li J, Han Xz. Effects of hypoxia inducible factor ⁃ 1α on osteogenic differentiation and angiogenesis related factors of bone marrow mesenchymal stem cells [J]. Kouqiang Jibing Fangzhi. 2021, 29(7):449-455. 

[29] Li J, Zuo Xh, Liu Xy, Zhang K, Han Xz, He Hy. Effect of over expression of miR-378a on osteogenic and vascular differentiation of bone marrow mesenchymal stem cell sheet. Zhongguo Zuzhi Gongcheng Yanjiu. 2021; 25(31):4939-4944. 

[30] Zhang B, Li Y, Yu Y, et al. MicroRNA-378 Promotes Osteogenesis-Angiogenesis Coupling in BMMSCs for Potential Bone Regeneration[J]. Anal Cell Pathol (Amst). 2018; 2018:8402390. Published 2018 Mar 1. 

[31] Huang Y, Du KL, Guo PY, et al. IL-16 regulates macrophage polarization as a target gene of mir-145-3p [J]. Mol Immunol. 2019; 107:1-9. 

[32] Geng Z, Yu Y, Li Z, et al. miR-21 promotes osseointegration and mineralization through enhancing both osteogenic and osteoclastic expression[J]. Mater Sci Eng C Mater Biol Appl. 2020; 111:110785. 

[33] Li Z, Jiang R, Yue Q, Peng H. MicroRNA-29 regulates myocardial microvascular endothelial cells proliferation and migration in association with IGF1 in type 2 diabetes[J]. Biochem Biophys Res Commun. 2017; 487(1):15-21. 

[34] Lu GD, Cheng P, Liu T, Wang Z. BMSC-Derived Exosomal miR-29a Promotes Angiogenesis and Osteogenesis [J]. Front Cell Dev Biol. 2020; 8:608521. Published 2020 Dec 9. 

[35] Yu B, Gong M, He Z, et al. Enhanced mesenchymal stem cell survival induced by GATA-4 overexpression is partially mediated by regulation of the miR-15 family[J]. Int J Biochem Cell Biol. 2013; 45(12):2724-2735. 

[36] Okada M, Kim HW, Matsu-ura K, Wang YG, Xu M, Ashraf M. Abrogation of Age-Induced MicroRNA-195 Rejuvenates the Senescent Mesenchymal Stem Cells by Reactivating Telomerase [J]. Stem Cells. 2016; 34(1):148-159. 

[37] Zhao WJ, Zhang HF, Su JY. Downregulation of microRNA-195 promotes angiogenesis induced by cerebral infarction via targeting VEGFA [J]. Mol Med Rep. 2017; 16(4):5434-5440. 

[38] Ma X, Yao H, Yang Y, et al. miR-195 suppresses abdominal aortic aneurysm through the TNF-α/NF-κB and VEGF/PI3K/Akt pathway [J]. Int J Mol Med. 2018; 41(4):2350-2358. 

[39] Hou Jy, Guo Tz, Yu Ml, Long Hb, Wu H. Hypoxia preconditioning targets and downregulates miR-195 and promotes bone marrow mesenchymal stem cell survival and pro-angiogenic potential by activating MALAT1 [J]. Zhongguo Zuzhi Gongcheng Yanjiu. 2022; 26(7): 1005-1011.