Welcome to Francis Academic Press

Academic Journal of Materials & Chemistry, 2023, 4(4); doi: 10.25236/AJMC.2023.040402.

Application Progress of Carbon Dioxide in Chemical Industry by Molecular Simulation Technology

Author(s)

Cuijuan Zhang1, Tao Liu2, Chunhong He1, Shanghua Feng1

Corresponding Author:
Tao Liu
Affiliation(s)

1College of Chemistry and Chemical Engineering, Taishan University, Tai’an, Shandong, China

2Bidding Office, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China

Abstract

CO2 has attracted much attention due to its unique physical and chemical properties. Supercritical CO2 has been widely used because of its mild conditions, non-toxicity and wide sources. In the field of material chemistry, molecular simulation technology, as a new scientific research method, plays an important role in the basic theory and application of CO2. This paper reviews the progress of molecular simulation technology in the field of CO2 research in recent years, including physical properties, supercritical point properties, transcritical point characteristics, diffusion, adsorption separation, extraction and other mass transfer properties, as well as interface properties. Compared with the traditional method, the computer simulation method has obvious advantages.

Keywords

CO2; supercritical; molecular simulation; chemical industry; research progress

Cite This Paper

Cuijuan Zhang, Tao Liu, Chunhong He, Shanghua Feng. Application Progress of Carbon Dioxide in Chemical Industry by Molecular Simulation Technology. Academic Journal of Materials & Chemistry (2023) Vol. 4, Issue 4: 7-13. https://doi.org/10.25236/AJMC.2023.040402.

References

[1] Zhan S. P., Ding S. Q., Wang W. J., et al. Progress in the Preparation of Biodegradable Polymer/drug Nanoparticles by Supercritical Fluid Technology[J]. Journal of Chemical Engineering, 2020, 71(3): 923 - 935. 

[2] Liu Y. B., Xiong M. Q., Zhang J. F. et al. Research Progress of Supercritical CO2 in Chemical Industry[J]. Energy Saving Technology, 2022, 4(5):403-408. 

[3] Zhao S, Wang C, Bai B, et al. Study on the PolystyrenePlastic Degradation in Supercritical Water /CO2 Mixed Environment and Carbon Fixation of Polystyrene Plastic in CO2 Environment[J]. Journal of Hazardous Materials, 2021(421):126763. 

[4] Vecchia FD, Santos V, Schütz M, et al. Wellbore Integrityin a Saline Aquifer: Experimental Steel- cement Interface Degradation under Supercritical CO2 Conditions Representative of Brazil's Parana Basin[J]. International Journal of Greenhouse Gas Control, 2020(98) 103077. 

[5] Huang L. J., Kang H., Cheng S., et al. Application of Supercritical CO2 Cleaning Technology in CMOS Image Sensors[J]. Micro- and Nanoelectronics, 2017, 54 (4): 273-278, 290. 

[6] Pérez M, Ramil M, Cela R, et al. Supercritical Fluid Chromatography-mass Spectrometric Determination of Chiral Fungicides in Viticulture-related Samples[J]. Journal of Chromatography A, 2021(1644): 46212426-32. 

[7] Li G. Q, Qiu J, Liu D. L., et al. Advances in Molecular Simulation of Montmorillonite [J] Mineral Comprehensive Utilization 2019, 8(4):26-32. 

[8] Li Y. G., Liu J. C., Molecular Simulation and Chemical Engineering [J]. Modern Chemical Industry, 2001, 21(7):10-13. 

[9] Francoeur. Introduction to Molecular Simulation[M]. Beijing: World Book Publishing Company, 2010. 

[10] Frenkel Smit. Molecular Simulation from Algorithms to Applications [M]. Beijing: Chemical Industry Press, 2002. 

[11] Wu F. D., Zheng H. D., Liu J. X. Advances in the Application of Molecular Dynamics Simulation in Chemical Industry [J]. Journal of Chongqing University of Technology (Natural Sciences). 2013, 27(10) 59-65. 

[12] Xie L. F. Progress in the Study of Volume Expansion Coefficient of CO2-petroleum Hydrocarbon Substances [J]. Light Industry Science and Technology. 2018, 34(9):38-40. 

[13] Bing L, Shi J, Sun B, et al. Molecular Dynamics Simulation on Volume Swelling of CO2-alkane System[J]. Fuel, 2015, 143:194-201. 

[14] Aida T, Aizawa T, Kanakubo M, et al. Analysis of Volume Expansion Mechanism of CO2-acetate Systems at 40°C [J]. Journal of Supercritical Fluids, 2010, 55(1):56-61. 

[15] Kavousi A, Torabi F, Chan C W, et al. Experimental Measurement and Parametric Study of CO2, Solubility and Molecular Diffusivity in Heavy Crude Oil Systems[J]. Fluid Phase Equilibria, 2014, 371(12): 57-66. 

[16] Liu J. H., Lou Y. M., Zhou X. P., et al. Molecular Dynamics Simulation of Supercritical Carbon Dioxide with Co-solvent Methano [J]. Journal of Southwest Normal University: Natural Science Edition, 2009, 34(6): 28-33. 

[17] Higashi H, Iwai Y, Arai Y. Solubilities and Diffusion Coefficients of High Boiling Compounds in Supercritical Carbon Dioxide [J]. Chem Eng Sci, 2001, 56(10): 3027-3044. 

[18] Tang J., Huang Y. P., Wang J. F., Molecular Dynamics Simulation of the Microstructural Characteristics of Carbon Dioxide Systems at Transcritical times [J]. Nuclear Dynamics Engineering, 2021, 42(4):14-20. 

[19] J. Tang, Y. P. Huang, J. F. Wang, Molecular Dynamics Study of the Physical Distortion Properties of CO2 near the Critical poin [J]. t Nuclear Dynamics 2021, 42(4):73-79. 

[20] Yao B. X., Liu F. Molecular Dynamics Simulation of CO2 Viscosity and Thermal Conductivity at the Critical Point [J]. Cryogenic/Refrigeration Technology, 2021, 49(9):77-81. 

[21] Sun C., Liu F., Shen L. Mechanism and Kinetics of Carbon Dioxide Absorption by [N1111] [Lys] Aqueous Solutions [J]. Journal of Chemical Engineering in Universities No. 2020, 34(5):1135-1142. 

[22] Li H. Y. Molecular Dynamics Simulation of Supercritical Carbon Dioxide Extraction of Deep Thick Oil Components [J]. Science Technology and Engineering, 2021, 21(29):12543-12550. 

[23] Liu Y. Molecular Dynamics Simulation of the Diffusion Properties of Supercritical Fluids and Extraction of Active Ingredients in Deer Antler [D]. Tianjin: Tianjin University, 2006. 

[24] Shi J. Experimental Study and Molecular Dynamics Simulation of the Diffusion Coefficient of Supercritical CO2 System [D]. Tianjin: Tianjin University, 2006. 

[25] Li S. Y., Sun L., Cai H. F. Molecular Dynamics Simulation of Diffusion Behavior of CO2 and O2 in PLA/Poly (vinylidene fluoride) blends[J]. China Plastics, 2021, 35(10):51-55. 

[26] Shi Q. Molecular Dynamics Simulation of Diffusion and Separation of CO2/CH4/N2 in MER-type Zeolite [J]. Journal of Fuel Chemistry [J] 2021, 49(10):1531-1539. 

[27] Chai J. C., Yang X. N. Molecular Dynamics Simulation of Water-supercritical Carbon Dioxide Interface [J]. Journal of Yangzhou University (Natural Science Edition) 2008, 11(2):34-39. 

[28] Li Q., Lu X. C., Zhang L. H. Molecular Simulation of the Interaction between Montmorillonite and Carbon Dioxide Fluids[C]. Joint Annual Meeting of Chinese Geosciences, 2020:3368. 

[29] Hu Y., Yang X. N. Molecular Simulation of Interfacial Properties of Gold Nanoparticles in scCO2 Solvent [J]. Journal of Chemical Engineering, 2011, 62(2):295-300.