Welcome to Francis Academic Press

Academic Journal of Computing & Information Science, 2022, 5(4); doi: 10.25236/AJCIS.2022.050402.

The skinning in character animation: A survey

Author(s)

Yanan Yang

Corresponding Author:
Yanan Yang
Affiliation(s)

Nanjing University of the Arts, Nanjing, Jiangsu, China

Abstract

The skinning in the character animation is always one of the vital research contents in computer animation. In recent years, with the rapid development of the 3D game, animation, and film special effects production industry, the requirements for character skin technology have gradually increased, and the innovative development of skin technology has also received more and more attention from researchers, resulting in the birth of many new methods and technologies. This article focuses on analyzing different methods of skinning technology, which can be roughly divided into four categories: Direct Skinning Methods, Automatic Skinning, Example-based Shape Deformation, and Direct Delta Skinning.  The contents and details of each method are listed, and the advantages and disadvantages of the above methods are compared and analyzed. Finally, aiming at the shortcomings in the current work, some problems that can be further studied are proposed.

Keywords

skinning; character animation; weight; Deformation

Cite This Paper

Yanan Yang. The skinning in character animation: A survey. Academic Journal of Computing & Information Science (2022), Vol. 5, Issue 4: 4-17. https://doi.org/10.25236/AJCIS.2022.050402.

References

[1] A LEXA , M. 2002. Linear combination of transformations. In ACM Transactions on Graphics (TOG), vol. 21, ACM, 380–387.

[2] A LEXA, M., AND MÜLLER, W. 2000. Representing animations by principal components. In Computer Graphics Forum, vol. 19, Wiley Online Library, 411–418.

[3] A LEXANDRU-EUGEN , I., P ETR , K., L ADISLAV , K., AND M ARK , P. 2017. Phace: Physics-based Face Modeling and Animation. ACM Trans. Graph. 36, 4, Article 153 (July 2017), 14 pages.

[4] A U , O. K.-C., T AI , C.-L., C HU , H.-K., C OHEN -O R , D., AND L EE , T.-Y. 2008. Skeleton extraction by mesh contraction. ACM Trans. Graph. 27, 3.

[5] B ADLER , N. I., AND M ORRIS , M. 1982. Modelling flexible articulated objects. In Proc. Computer Graphics’ 82, Online Conf,305–314.

[6] B ARAN , I., AND P OPOVI ´ C , J. 2007. Automatic rigging and animation of 3D characters. ACM Trans. Graph. 26, 3, 72:1–72:8.

[7] B EN -C HEN , M., W EBER , O., AND G OTSMAN , C. 2009. Variational harmonic maps for space deformation. ACM Trans. Graph. 28,3.

[8] B HARAJ , G., T HORMÄHLEN , T., S EIDEL , H.-P., AND T HEOBALT , C. 2012. Automatically rigging multi-component characters. Comput. Graph. Forum 30, 2.

[9] B INH ,H.L., AND J ESSICA , K.H. 2016. Real-time Skeletal Skinning with Optimized Centers of Rotation. ACM Trans. Graph. 35, 4, Article 37 (July 2016), 10 pages.

[10] B OROSÁN , P., J IN , M., D E C ARLO , D., G INGOLD , Y., AND N EALEN , A. 2012. RigMesh: Automatic rigging for part-based shape modeling and deformation. ACM Trans. Graph. 31, 6, 198:1–198:9.

[11] B OROSÁN , P., H OWARD , R., Z HANG , S., AND N EALEN , A. 2010. Hybrid Mesh Editing. 41–44.

[12] B OTSCH , M., AND K OBBELT , L. 2004. An intuitive framework for real-time freeform modeling. ACM Trans. Graph. 23, 3.

[13] B OUAZIZ , S., D EUSS , M., S CHWARTZBURG , Y., W EISE , T., AND P AULY , M. 2012. Shape-up: Shaping discrete geometry with projections. Comput. Graph. Forum 31, 5, 1657–1667.

[14] B OUAZIZ , S., S EBASTIAN , M.M T IANTIAN , L., L ADISLAV , K., AND M ARK , P. 2014. Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans. Graph. 33, 4, Article 154 (July 2014), 11 pages.

[15] B USS , S. R., AND F ILLMORE , J. P. 2001. Spherical averages and applications to spherical splines and interpolation. ACM Transactions on Graphics (TOG) 20, 2, 95–126.

[16] C AO , J., T AGLIASACCHI , A., O LSON , M., Z HANG , H., AND S U , Z. 2010. Point cloud skeletons via laplacian-based contraction. In Proc. of IEEE Conf. on Shape Modeling and Applications, 187–197.

[17] C HRISTOPHER , B., E LMAR , E., AND K LAUS , H.2018. Hyper-reduced Projective Dynamics. ACM Trans. Graph. 37, 4, Article 80 (July 2018), 13 pages.

[18] C OLE , F., G OLOVINSKIY , A., L IMPAECHER , A., B ARROS , H. S., F INKELSTEIN , A., F UNKHOUSER , T., AND R USINKIEWICZ , S.2008. Where do people draw lines? ACM Trans. Graph. 27, 3 (Aug.).

[19] D IMITAR , D., T IANTIAN , L., J ING , L., B ERNHARD , T., AND L ADISLAV ,K.2018. FEPR: Fast Energy Projection for Real-time Simulation of Deformable Objects. ACM Trans. Graph. 37, 4, Article 79 (July 2018), 12 pages.

[20] D UO , L., S HINJIRO , S., D EBANGA , R.N., AND D IENESH , K. P. 2013. Thin Skin Elastodynamics. ACM Trans. Graph. 32, 4, Article 49 (July 2013), 10 pages.

[21] F ABIAN , H., S EBASTIAN , M., B ENHARD , T., R OBERT , S., S TELIAN , C., AND M ARKUS , G.2012. Rig-space Physics. ACM Trans. Graph. 31, 4, Article 72 (July 2012), 8 pages.

[22] F ABIAN , H., B ERNHARD , T., S TELIAN , C., R OBERT , W. S., AND M ARKUS ,G.2013. Efficient Simulation of Secondary Motion in Rig-space. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 165–171.

[23] F AURE , F., G ILLES , B., B OUSQUET , G., AND P AI , D. K. 2011. Sparse meshless models of complex deformable solids. ACM Trans. Graph. 30 (August), 73:1–73:10.

[24] F ORSTMANN , S., AND O HYA , J. 2006. Fast skeletal animation by skinned arc-spline based deformation. In Proc. Eurographics , short papers volume.

[25] F ORSTMANN , S., O HYA , J., K ROHN -G RIMBERGHE , A., AND M C D OUGALL , R. 2007. Deformation styles for spline-based skeletal animation. In Proc. SCA, 141–150.

[26] G OVINDU , V. M. 2004. Lie-algebraic averaging for globally consistent motion estimation. In Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on, vol. 1, IEEE, I–684.

[27] G REGORY , A., AND W ESTON , D. 2008. Offset curve deformation from skeletal animation. In ACM SIGGRAPH 2008 talks, ACM,57.

[28] G AL , R., S ORKINE , O., M ITRA , N., AND C OHEN -O R , D. 2009. iWires: An analyze-and-edit approach to shape manipulation. ACM Trans. Graph. 28, 3, 33:1–33:10.

[29] H ARMON , D., AND Z ORIN , D. 2013. Subspace integration with local deformations. ACM Trans. Graph. 32, 4.

[30] H EJL , J. 2004. Hardware skinning with quaternions. Game Programming Gems 4, 487–495.

[31] H ORMANN , K., AND S UKUMAR , N. 2008. Maximum entropy coordinates for arbitrary polytopes. Comput. Graph. Forum 27, 5.

[32] H UANG , H., W U , S., C OHEN -O R , D., G ONG , M., Z HANG , H., L I , G., AND B.C HEN . 2013. L1-medial skeleton of point cloud. ACM Trans. Graph. 32.

[33] H UANG , Q., W ICKE , M., A DAMS , B., AND G UIBAS , L. 2009. Shape decomposition using modal analysis. Comput. Graph. Forum 28, 2.

[34] H YUN , D.-E., Y OON , S.-H., C HANG , J.-W., S EONG , J.-K., K IM , M.-S., AND J ÜTTLER , B. 2005. Sweep-based human deformation. The Visual Computer 21, 8-10, 542–550.

[35] J ACOBSON , A., AND S ORKINE , O. 2011. Stretchable and twistable bones for skeletal shape deformation. ACM Trans. Graph. 30, 6,165:1–165:8.

[36] J ACOBSON , A., T OSUN , E., S ORKINE , O., AND Z ORIN , D. 2010. Mixed finite elements for variational surface modeling. In Proc. SGP, 1565–1574.

[37] J ACOBSON , A., B ARAN , I., P OPOVI ´ C , J., AND S ORKINE , O. 2011. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4, 78:1–78:8.

[38] J ACOBSON , A., P ANOZZO , D., G LAUSER , O., P REDALIER , C., H ILLEGES , O., AND S ORKINE -H ORNING , O. 2014. Tangible and modular input device for character articulation. ACM Trans. Graph. 33, 4, to appear.

[39] J ACOBSON , A. 2013. Algorithms and Interfaces for Real-Time Deformation of 2D and 3D Shapes. PhD thesis, ETH Zurich.

[40] J OSHI , P., M EYER , M., D E R OSE , T., G REEN , B., AND S ANOCKI , T. 2007. Harmonic coordinates for character articulation. ACM Trans. Graph. 26, 3, 71.

[41] J U , T., S CHAEFER , S., AND W ARREN , J. 2005. Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24, 3,561–566.

[42] K ALRA , P., M AGNENAT -T HALMANN , N., M OCCOZET , L., S ANNIER , G., A UBEL , A., AND T HALMANN , D. 1998. Real-time animation of realistic virtual humans. Computer Graphics and Applications, IEEE 18, 5, 42–56.

[43] K AVAN , L., AND S ORKINE , O. 2012. Elasticity-inspired deformers for character articulation. ACM Transactions on Graphics (proceedings of ACM SIGGRAPH ASIA) 31, 6, 196:1–196:8.

[44] K AVAN , L., AND Ž ÁRA , J. 2005. Spherical blend skinning: a real-time deformation of articulated models. In Proceedings of the 2005 symposium on Interactive 3D graphics and games, ACM, 9–16.

[45] K AVAN , L., C OLLINS , S., Z ARA , J., AND O’S ULLIVAN , C. 2008. Geometric skinning with approximate dual quaternion blending. ACM Trans. Graph. 27, 4, 105:1–105:23.

[46] K AVAN , L., C OLLINS , S., AND O’S ULLIVAN , C. 2009. Automatic linearization of nonlinear skinning. In Proc. I3D, 49–56.

[47] K ALOGERAKIS , E., H ERTZMANN , A., AND S INGH , K. 2010. Learning 3d mesh segmentation and labeling. ACM Trans. Graph.29, 4, 102.

[48] K IM , Y., AND H AN , J. 2014. Bulging-free dual quaternion skinning. Computer Animation and Virtual Worlds 25, 3-4, 323–331.

[49] K RY , P. G., J AMES , D. L., AND P AI , D. K. 2002. Eigen Skin: Real time large deformation character skinning in hardware. In Proceedings of the 2002 ACM SIGGRAPH Symposium on Computer Animation (SCA-02), ACM Press, New York, S. N. Spencer, Ed., 153–160.

[50] K URIHARA , T., AND M IYATA , N. 2004. Modeling deformable human hands from medical images. In Proceedings of the 2004 ACM SIGGRAPH Symposium on Computer Animation (SCA-04), 357–366.

[51] K ADLECEK , P., A LEXANDRU-E UGEN , I., T IANTIAN , L., J AROSLAV , K., AND L ADISLAV , K. 2016. Reconstructing Personalized Anatomical Models for Physics-based Body Animation. ACM Trans. Graph. 35, 6, Article 213 (Nov. 2016), 13 pages.

[52] L EE , G. S., L IN , A., S CHILLER , M., P ETERS , S., M C L AUGHLIN , M., AND H ANNER , F. 2013. Enhanced dual quaternion skinning for production use. In ACM SIGGRAPH 2013 Talks, ACM, 9.

[53] L EE , Y., AND L EE , S. 2002. Geometric snakes for triangular meshes. Comput. Graph. Forum 21, 3.

[54] L EWIS , J. P., C ORDNER , M., AND F ONG , N. 2000. Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In Proceedings of ACM SIGGRAPH, 165–172.

[55] L IN , G., Y U-KUN , L., D UN , L., S HU-YU , C., AND S HIHONG , X.2016. Efficient and Flexible Deformation Representation for Data-Driven Surface Modeling. ACM Trans. Graph. 35, 5, Article 158 (July 2016), 17 pages.

[56] L IPMAN , Y., K OPF , J., C OHEN -O R , D., AND L EVIN , D. 2007. GPU-assisted positive mean value coordinates for mesh deformations. In Proc. SGP, 117–124.

[57] L IPMAN , Y., L EVIN , D., AND C OHEN -O R , D. 2008. Green coordinates. ACM Trans. Graph. 27, 3.

[58] L IU , L., K ANGKANG ,Y., B IN , W., AND B AINING , G. 2013. Simulation and Control of Skeleton-driven Soft Body Characters. ACM Trans. Graph. 32, 6, Article 215 (Nov. 2013), 8 pages.

[59] M AGNENAT -T HALMANN , N., L APERRIÈRE , R., AND T HALMANN , D. 1988. Joint-dependent local deformations for hand animation and object grasping. In Graphics Interface, 26–33.

[60] M AGNENAT-T HALMANN , N., F. C., H YEWON , S., AND G. P. 2004. Modeling of bodies and clothes for virtual environments. In International Conference on Cyberworlds 2004. 201–208.

[61] M ANSON , J., AND S CHAEFER , S. 2010. Moving least squares coordinates. In Proc. SGP, 1517–1524.

[62] M ANCEWICZ , J., M ATT , L. D., H ANS , R., AND C YRUS , A. W. 2014. Delta Mush: Smoothing Deformations While Preserving Detail. In Proceedings of the Fourth Symposium on Digital Production (DigiPro ’14). ACM, New York, NY, USA, 7–11.

[63] M CADAMS , A., Y ONGNING , Z., A NDREW , S., M ARK , E., R ASMUS , T., J OSEPH , T., AND E FTYCHIOS ,S. 2011. Efficient Elasticity for Character Skinning with Contact and Collisions. ACM Trans. Graph. 30, 4, Article 37 (July 2011), 12 pages.

[64] M C L AUGHLIN , T., C UTLER , L., AND C OLEMAN , D. 2011. Character rigging, deformations, and simulations in film and game production. In ACM SIGGRAPH 2011 Courses, ACM, New York, NY, USA, SIGGRAPH ’11, 5:1–5:18.

[65] M ERRY , B., M ARAIS , P., AND G AIN , J. 2006. Animation space: A truly linear framework for character animation. ACM Trans. Graph. 25, 4, 1400–1423.

[66] M ILLER , C., A RIKAN , O., AND F USSELL , D. 2010. Frankenrigs: Building character rigs from multiple sources. In Proc. SCA.

[67] M OHR , A., AND G LEICHER , M. 2003. Building efficient, accurate character skins from examples. ACM Trans. Graph. 22, 3 (July),562–568.

[68] M URTAGH , D., 2008. Pose-space deformation on top of dual quaternion skinning. M.S. Thesis, U. Dublin.

[69] N EUMANN , T., V ARANASI , K., H ASLER , N., W ACKER , M., M AGNOR , M., AND T HEOBALT , C. 2013. Capture and statistical modeling of arm-muscle deformations. ACM Trans. Graph. 32.

[70] O HTAKE , Y., B ELYAEV , A., AND S EIDEL , H.-P. 2004. Ridge-valley lines on meshes via implicit surface fitting. ACM Trans. Graph. 23, 3, 609–612.

[71] O RVALHO , V., B ASTOS , P., P ARKE , F., O LIVEIRA , B., , AND A LVAREZ , X. 2012. A facial rigging survey: State of the art report. In Eurographics, 183–204.

[72] Ö ZTIRELI , A. C., B ARAN , I., P OPA , T., D ALSTEIN , B., S UMNER , R. W., AND G ROSS , M. 2013. Differential blending for expressive sketch-based posing. In Proc. SCA.

[73] P ORANNE , R., O VREIU , E., AND G OTSMAN , C. 2013. Interactive planarization and optimization of 3d meshes. Comput. Graph.Forum 32, 1, 152–163.

[74] P RAZAK , M., K AVAN , L., M C D ONNELL , R., D OBBYN , S., AND O’S ULLIVAN , C. 2010. Moving crowds: A linear animation system for crowd simulation. In Proc. I3D, 9:1–9:1.

[75] R EMILLARD , O., AND P AUL , G. K. 2013. Embedded Thin Shells for Wrinkle Simulation. ACM Trans. Graph. 32, 4, Article 50 (July 2013), 8 pages.

[76] S ATTLER , M., S ARLETTE , R., AND K LEIN , R. 2005. Simple and efficient compression of animation sequences. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM, 209–217.

[77] S AITO , S., Z I-Y E , Z., AND L ADISLAV , K. 2015. Computational Bodybuilding: Anatomically-based Modeling of Human Bodies. ACM Trans. Graph. 34, 4, Article 41 (July 2015), 12 pages.

[78] S CHEMALI , L., T HIERY , J.-M., AND B OUBEKEUR , T. 2012. Automatic line handles for freeform deformation. In Eurographics2012 (Short).

[79] S HNEIDERMAN , B. 1997. Direct manipulation for comprehensible, predictable and controllable user interfaces. In Proc. IUI, 33–39.

[80] S HOTTON , J., S HARP , T., K IPMAN , A., F ITZGIBBON , A., F INOCCHIO , M., B LAKE , A., C OOK , M., AND M OORE , R. 2013.Real-time human pose recognition in parts from single depth images. Commun. ACM 56, 1.

[81] S INGH , K., AND F IUME , E. 1998. Wires: a geometric deformation technique. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques, ACM, 405–414.

[82] S LOAN , P.-P. J., R OSE , C. F., AND C OHEN , M. F. 2001. Shape by example. In SI3D ’01: Proceedings of the 2001 symposium on Interactive 3D graphics, ACM Press, New York, NY, USA, 135–143.

[83] S MITH , B., F ERNANDO , D. G., AND T HEODORE , K. 2018. Stable Neo-Hookean Flesh Simulation. ACM Trans. Graph. 37, 2, Article 12 (March 2018), 15 pages.

[84] S UMNER , R. W., AND P OPOVI ´ C , J. 2004. Deformation transfer for triangle meshes. ACM Trans. Graph. 23, 3 (Aug.), 399–405.

[85] T AGLIASACCHI , A., A LHASHIM , I., O LSON , M., AND Z HANG , H. 2012. Mean curvature skeletons. Comput. Graph. Forum 31, 5.

[86] T ANG , C., S UN , X., G OMES , A., W ALLNER , J., AND P OTTMANN , H. 2014. Form-finding with polyhedral meshes made simple. ACM Trans. Graph.

[87] T HIERY , J.-M., T IERNY , J., AND B OUBEKEUR , T. 2012. Cager: Cage-based reverse engineering of animated 3d shapes. Comput. Graph. Forum 31, 8.

[88] T SOLI , A., M AHMOOD , N., AND B LACK , M. J. 2014. Breathing life into shape: Capturing, modeling and animating 3d humanbreathing. ACM Trans. Graph. 33, 4.

[89] VAN K AICK , O., F ISH , N., K LEIMAN , Y., A SAFI , S., AND C OHEN -O R , D. 2014. Shape segmentation by approximate convexity analysis. ACM Trans. Graph..

[90] V AILLANT , R., L OIC , B., G AEL , G., M ARIE-P ALUE , C., D AMIEN , R., B RIAN , W., O LIVIER , G., AND M ATHIAS , P. 2013. Implicit Skinning: Realtime Skin Deformation with Contact Modeling. ACM Trans. Graph. 32, 4, Article 125 (July 2013), 12 pages.

[91] W EBER , J. 2000. Run-time skin deformation. In Proceedings of game developers conference.

[92] W EBER, O., SORKINE, O., LIPMAN, Y., AND GOTSMAN, C. 2007. Context-aware skeletal shape deformation. Computer Graphics Forum (Proceedings of Eurographics) 26, 3.

[93] W EBER , O., B EN -C HEN , M., AND G OTSMAN , C. 2009. Complex barycentric coordinates with applications to planar shape deformation. Comput. Graph. Forum 28, 2, 587–597.

[94] W EBER , O., AND G OTSMAN , C. 2010. Controllable conformal maps for shape deformation and interpolation. ACM Trans. Graph.29, 4, 78:1–78:11.

[95] XIAN, X., LEWIS, J., SOON, S. H., FONG, N., AND TIAN, F. 2006. A powell optimization approach for example-based skinning in a production animation environment. In Computer Animation and Social Agents (CASA).

[96] X IAN , X., S OON , S. H., F ONG , N., AND T IAN , F. 2007. Spherical skinning from examples. In International Workshop on Advanced Image Technology (IWAIT).

[97] X U , H., AND J ERNEJ , B. 2016. Pose-space Subspace Dynamics. ACM Trans. Graph. 35, 4, Article 35 (July 2016), 14 pages.

[98] Y ANG , X., S OMASEKHARAN , A., AND Z HANG , J. J. 2006. Curve skeleton skinning for human and creature characters. Comput. Animat. Virtual Worlds 17, 3-4, 281–292.xs.