Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 31, 2010

Treatment strategies for spinal muscular atrophy

  • Heidi Fuller EMAIL logo , Marija Barišić , Đurđica Šešo-Šimić , Tea Špeljko , Glenn Morris and Goran Šimić

Abstract

Progress in understanding the genetic basis and pathophysiology of spinal muscular atrophy (SMA), along with continuous efforts in finding a way to increase survival motor neuron (SMN) protein levels have resulted in several strategies that have been proposed as potential directions for efficient drug development. Here we provide an overview on the current status of the following approaches: 1) activation of SMN2 gene and increasing full length SMN2 transcript level, 2) modulating SMN2 splicing, 3) stabilizing SMN mRNA and SMN protein, 4) development of neurotrophic, neuroprotective and anabolic compounds and 5) stem cell and gene therapy. The new preclinical advances warrant a cautious optimism for emergence of an effective treatment in the very near future.

[1] Botta A., Tacconelli A., Bagni I., Giardina E., Bonifazi E., Pietropolli A., et al., Transmission ratio distortion in the spinal muscular atrophy locus: data from 314 prenatal tests, Neurology, 2005, 65, 1631–1635 http://dx.doi.org/10.1212/01.wnl.0000184506.61354.5b10.1212/01.wnl.0000184506.61354.5bSearch in Google Scholar

[2] Bromberg M. B., Swoboda K. J., Motor unit number estimation in infants and children with spinal muscular atrophy, Muscle Nerve, 2002, 25, 445–447 http://dx.doi.org/10.1002/mus.1005010.1002/mus.10050Search in Google Scholar

[3] Crawford T. O., Pardo C. A., The neurobiology of childhood spinal muscular atrophy, Neurobiol Dis, 1996, 3, 97–110 http://dx.doi.org/10.1006/nbdi.1996.001010.1006/nbdi.1996.0010Search in Google Scholar

[4] Dubowitz, Disorders of the lower motor neuron, the spinal muscular atrophy, 1995, in: Dubowitz (ed), Muscle disorders in childhood, Saunders, London, 325–369 Search in Google Scholar

[5] Greenfield J.C., Stern R.O., The anatomical identity of the Werdnig-Hoffmann and Oppenheim forms of infantile muscular atrophy, Brain, 1927, 50, 652–686 http://dx.doi.org/10.1093/brain/50.3-4.65210.1093/brain/50.3-4.652Search in Google Scholar

[6] Pearn J., Classification of spinal muscular atrophies, Lancet, 1980, 1, 919–922 http://dx.doi.org/10.1016/S0140-6736(80)90847-810.1016/S0140-6736(80)90847-8Search in Google Scholar

[7] Simic G., Pathogenesis of proximal autosomal recessive spinal muscular atrophy, Acta Neuropathol, 2008, 116, 223–234 http://dx.doi.org/10.1007/s00401-008-0411-110.1007/s00401-008-0411-1Search in Google Scholar

[8] Zerres K., Rudnik-Schoneborn S., Natural history in proximal spinal muscular atrophy. Clinical analysis of 445 patients and suggestions for a modification of existing classifications, Arch Neurol, 1995, 52, 518–523 10.1001/archneur.1995.00540290108025Search in Google Scholar

[9] Wharton S., Ince P.G., Pathology of motor neuron disorders, 2003. In: Shaw P.J., Strong M.J. (eds) Motor neuron disorders. Blue books of practical neurology, book 28. Butterworth-Heineman, Elsevier Science, Philadelphia, pp 17–49 10.1016/S1877-3419(09)70103-5Search in Google Scholar

[10] Burglen L., Lefebvre S., Clermont O., Burlet P., Viollet L., Cruaud C., et al., Structure and organization of the human survival motor neurone (SMN) gene, Genomics, 1996, 32, 479–482 http://dx.doi.org/10.1006/geno.1996.014710.1006/geno.1996.0147Search in Google Scholar PubMed

[11] Parsons D. W., McAndrew P. E., Iannaccone S. T., Mendell J. R., Burghes A. H., Prior T. W., Intragenic telSMN mutations: frequency, distribution, evidence of a founder effect, and modification of the spinal muscular atrophy phenotype by cenSMN copy number, Am J Hum Genet, 1998, 63, 1712–1723 http://dx.doi.org/10.1086/30216010.1086/302160Search in Google Scholar PubMed PubMed Central

[12] Brahe C., Bertini E., Spinal muscular atrophies: recent insights and impact on molecular diagnosis, J Mol Med, 1996, 74, 555–562 http://dx.doi.org/10.1007/s00109005005910.1007/s001090050059Search in Google Scholar

[13] DiMatteo D., Callahan S., Kmiec E. B., Genetic conversion of an SMN2 gene to SMN1: a novel approach to the treatment of spinal muscular atrophy, Exp Cell Res, 2008, 314, 878–886 http://dx.doi.org/10.1016/j.yexcr.2007.10.01210.1016/j.yexcr.2007.10.012Search in Google Scholar

[14] Monani U. R., Lorson C. L., Parsons D. W., Prior T. W., Androphy E. J., Burghes A. H., et al., A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2, Hum Mol Genet, 1999, 8, 1177–1183 http://dx.doi.org/10.1093/hmg/8.7.117710.1093/hmg/8.7.1177Search in Google Scholar

[15] Brahe C., Copies of the survival motor neuron gene in spinal muscular atrophy: the more, the better, Neuromuscul Disord, 2000, 10, 274–275 http://dx.doi.org/10.1016/S0960-8966(99)00137-610.1016/S0960-8966(99)00137-6Search in Google Scholar

[16] Feldkotter M., Schwarzer V., Wirth R., Wienker T. F., Wirth B., Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy, Am J Hum Genet, 2002, 70, 358–368 http://dx.doi.org/10.1086/33862710.1086/338627Search in Google Scholar PubMed PubMed Central

[17] Mailman M. D., Heinz J. W., Papp A. C., Snyder P. J., Sedra M. S., Wirth B., et al., Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2, Genet Med, 2002, 4, 20–26 http://dx.doi.org/10.1097/00125817-200201000-0000410.1097/00125817-200201000-00004Search in Google Scholar PubMed

[18] McAndrew P. E., Parsons D. W., Simard L. R., Rochette C., Ray P. N., Mendell J. R., et al., Identification of proximal spinal muscular atrophy carriers and patients by analysis of SMNT and SMNC gene copy number, Am J Hum Genet, 1997, 60, 1411–1422 http://dx.doi.org/10.1086/51546510.1086/515465Search in Google Scholar PubMed PubMed Central

[19] Wirth B., Brichta L., Schrank B., Lochmuller H., Blick S., Baasner A., et al., Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number, Hum Genet, 2006, 119, 422–428 http://dx.doi.org/10.1007/s00439-006-0156-710.1007/s00439-006-0156-7Search in Google Scholar PubMed

[20] Sumner C. J., Therapeutics development for spinal muscular atrophy, NeuroRx, 2006, 3, 235–245 http://dx.doi.org/10.1016/j.nurx.2006.01.01010.1016/j.nurx.2006.01.010Search in Google Scholar PubMed PubMed Central

[21] Oskoui M., Kaufmann P., Spinal muscular atrophy, Neurotherapeutics, 2008, 5, 499–506 http://dx.doi.org/10.1016/j.nurt.2008.08.00710.1016/j.nurt.2008.08.007Search in Google Scholar PubMed PubMed Central

[22] Oskoui M., Levy G., Garland C. J., Gray J. M., O’Hagen J., De Vivo D. C., et al., The changing natural history of spinal muscular atrophy type 1, Neurology, 2007, 69, 1931–1936 http://dx.doi.org/10.1212/01.wnl.0000290830.40544.b910.1212/01.wnl.0000290830.40544.b9Search in Google Scholar

[23] Wang C. H., Finkel R. S., Bertini E. S., Schroth M., Simonds A., Wong B., et al., Consensus statement for standard of care in spinal muscular atrophy, J Child Neurol, 2007, 22, 1027–1049 http://dx.doi.org/10.1177/088307380730578810.1177/0883073807305788Search in Google Scholar

[24] Echaniz-Laguna A., Miniou P., Bartholdi D., Melki J., The promoters of the survival motor neuron gene (SMN) and its copy (SMNc) share common regulatory elements, Am J Hum Genet, 1999, 64, 1365–1370 http://dx.doi.org/10.1086/30237210.1086/302372Search in Google Scholar

[25] Baron-Delage S., Abadie A., Echaniz-Laguna A., Melki J., Beretta L., Interferons and IRF-1 induce expression of the survival motor neuron (SMN) genes, Mol Med, 2000, 6, 957–968 10.1007/BF03401830Search in Google Scholar

[26] Rouget R., Vigneault F., Codio C., Rochette C., Paradis I., Drouin R., et al., Characterization of the survival motor neuron (SMN) promoter provides evidence for complex combinatorial regulation in undifferentiated and differentiated P19 cells, Biochem J, 2005, 385, 433–443 http://dx.doi.org/10.1042/BJ2004102410.1042/BJ20041024Search in Google Scholar

[27] Kernochan L. E., Russo M. L., Woodling N. S., Huynh T. N., Avila A. M., Fischbeck K. H., et al., The role of histone acetylation in SMN gene expression, Hum Mol Genet, 2005, 14, 1171–1182 http://dx.doi.org/10.1093/hmg/ddi13010.1093/hmg/ddi130Search in Google Scholar

[28] Lunke S., El-Osta A., The emerging role of epigenetic modifications and chromatin remodeling in spinal muscular atrophy, J Neurochem, 2009, 109, 1557–1569 http://dx.doi.org/10.1111/j.1471-4159.2009.06084.x10.1111/j.1471-4159.2009.06084.xSearch in Google Scholar

[29] Chang J. G., Hsieh-Li H. M., Jong Y. J., Wang N. M., Tsai C. H., Li H., Treatment of spinal muscular atrophy by sodium butyrate, Proc Natl Acad Sci U S A, 2001, 98, 9808–9813 http://dx.doi.org/10.1073/pnas.17110509810.1073/pnas.171105098Search in Google Scholar

[30] Miller A. A., Kurschel E., Osieka R., Schmidt C. G., Clinical pharmacology of sodium butyrate in patients with acute leukemia, Eur J Cancer Clin Oncol, 1987, 23, 1283–1287 http://dx.doi.org/10.1016/0277-5379(87)90109-X10.1016/0277-5379(87)90109-XSearch in Google Scholar

[31] Andreassi C., Angelozzi C., Tiziano F. D., Vitali T., De Vincenzi E., Boninsegna A., et al., Phenylbutyrate increases SMN expression in vitro: relevance for treatment of spinal muscular atrophy, Eur J Hum Genet, 2004, 12, 59–65 http://dx.doi.org/10.1038/sj.ejhg.520110210.1038/sj.ejhg.5201102Search in Google Scholar PubMed

[32] Brahe C., Vitali T., Tiziano F. D., Angelozzi C., Pinto A. M., Borgo F., et al., Phenylbutyrate increases SMN gene expression in spinal muscular atrophy patients, Eur J Hum Genet, 2005, 13, 256–259 http://dx.doi.org/10.1038/sj.ejhg.520132010.1038/sj.ejhg.5201320Search in Google Scholar PubMed

[33] Mercuri E., Bertini E., Messina S., Pelliccioni M., D’Amico A., Colitto F., et al., Pilot trial of phenylbutyrate in spinal muscular atrophy, Neuromuscul Disord, 2004, 14, 130–135 http://dx.doi.org/10.1016/j.nmd.2003.11.00610.1016/j.nmd.2003.11.006Search in Google Scholar PubMed

[34] Mercuri E., Bertini E., Messina S., Solari A., D’Amico A., Angelozzi C., et al., Randomized, double-blind, placebo-controlled trial of phenylbutyrate in spinal muscular atrophy, Neurology, 2007, 68, 51–55 http://dx.doi.org/10.1212/01.wnl.0000249142.82285.d610.1212/01.wnl.0000249142.82285.d6Search in Google Scholar PubMed

[35] Kaufmann P., Muntoni F., Issues in SMA clinical trial design. The International Coordinating Committee (ICC) for SMA Subcommittee on SMA Clinical Trial Design, Neuromuscul Disord, 2007, 17, 499–505 http://dx.doi.org/10.1016/j.nmd.2006.12.00110.1016/j.nmd.2006.12.001Search in Google Scholar PubMed PubMed Central

[36] www.clinicaltrials.gov Search in Google Scholar

[37] Grzeschik S. M., Ganta M., Prior T. W., Heavlin W. D., Wang C. H., Hydroxyurea enhances SMN2 gene expression in spinal muscular atrophy cells, Ann Neurol, 2005, 58, 194–202 http://dx.doi.org/10.1002/ana.2054810.1002/ana.20548Search in Google Scholar PubMed

[38] Liang W. C., Yuo C. Y., Chang J. G., Chen Y. C., Chang Y. F., Wang H. Y., et al., The effect of hydroxyurea in spinal muscular atrophy cells and patients, J Neurol Sci, 2008, 268, 87–94 http://dx.doi.org/10.1016/j.jns.2007.11.01210.1016/j.jns.2007.11.012Search in Google Scholar PubMed

[39] Chang J.G., Tsai F.J., Wang W.Y., Jong Y.J., Treatment of spinal muscular atrophy by hydroxyurea, American Journal of Human Genetics, 2002, 7,issue 4:2402 suppl. Search in Google Scholar

[40] Terbach N., Williams R. S., Structure-function studies for the panacea, valproic acid, Biochem Soc Trans, 2009, 37, 1126–1132 http://dx.doi.org/10.1042/BST037112610.1042/BST0371126Search in Google Scholar PubMed

[41] Brichta L., Hofmann Y., Hahnen E., Siebzehnrubl F. A., Raschke H., Blumcke I., et al., Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy, Hum Mol Genet, 2003, 12, 2481–2489 http://dx.doi.org/10.1093/hmg/ddg25610.1093/hmg/ddg256Search in Google Scholar PubMed

[42] Sumner C. J., Huynh T. N., Markowitz J. A., Perhac J. S., Hill B., Coovert D. D., et al., Valproic acid increases SMN levels in spinal muscular atrophy patient cells, Ann Neurol, 2003, 54, 647–654 http://dx.doi.org/10.1002/ana.1074310.1002/ana.10743Search in Google Scholar PubMed

[43] Brichta L., Holker I., Haug K., Klockgether T., Wirth B., In vivo activation of SMN in spinal muscular atrophy carriers and patients treated with valproate, Ann Neurol, 2006, 59, 970–975 http://dx.doi.org/10.1002/ana.2083610.1002/ana.20836Search in Google Scholar PubMed

[44] Weihl C. C., Connolly A. M., Pestronk A., Valproate may improve strength and function in patients with type III/IV spinal muscle atrophy, Neurology, 2006, 67, 500–501 http://dx.doi.org/10.1212/01.wnl.0000231139.26253.d010.1212/01.wnl.0000231139.26253.d0Search in Google Scholar PubMed

[45] Wirth B., Brichta L., Hahnen E., Spinal muscular atrophy and therapeutic prospects, Prog Mol Subcell Biol, 2006, 44, 109–132 http://dx.doi.org/10.1007/978-3-540-34449-0_610.1007/978-3-540-34449-0_6Search in Google Scholar PubMed

[46] Wirth B., Brichta L., Hahnen E., Spinal muscular atrophy: from gene to therapy, Semin Pediatr Neurol, 2006, 13, 121–131 http://dx.doi.org/10.1016/j.spen.2006.06.00810.1016/j.spen.2006.06.008Search in Google Scholar PubMed

[47] Piepers S., Cobben J. M., Sodaar P., Jansen M. D., Wadman R. I., Meester-Delver A., et al., Quantification of SMN protein in leucocytes from spinal muscular atrophy patients: effects of treatment with valproic acid, J Neurol Neurosurg Psychiatry, 2010 10.1136/jnnp.2009.200253Search in Google Scholar PubMed

[48] Swoboda K. J., Kissel J. T., Crawford T. O., Bromberg M. B., Acsadi G., D’Anjou G., et al., Perspectives on clinical trials in spinal muscular atrophy, J Child Neurol, 2007, 22, 957–966 http://dx.doi.org/10.1177/088307380730566510.1177/0883073807305665Search in Google Scholar PubMed PubMed Central

[49] Swoboda K. J., Scott C. B., Reyna S. P., Prior T. W., LaSalle B., Sorenson S. L., et al., Phase II open label study of valproic acid in spinal muscular atrophy, PLoS One, 2009, 4, e5268 http://dx.doi.org/10.1371/journal.pone.000526810.1371/journal.pone.0005268Search in Google Scholar PubMed PubMed Central

[50] Swoboda K. J., Scott C. B., Crawford T. O., Simard L. R., Reyna S. P., Krosschell K. J., et al., SMA CARNI-VAL trial part I: double-blind, randomized, placebo-controlled trial of L-carnitine and valproic acid in spinal muscular atrophy, PLoS One, 2010, 5, e12140 http://dx.doi.org/10.1371/journal.pone.001214010.1371/journal.pone.0012140Search in Google Scholar PubMed PubMed Central

[51] Cusco I., Barcelo M. J., Rojas-Garcia R., Illa I., Gamez J., Cervera C., et al., SMN2 copy number predicts acute or chronic spinal muscular atrophy but does not account for intrafamilial variability in siblings, J Neurol, 2006, 253, 21–25 http://dx.doi.org/10.1007/s00415-005-0912-y10.1007/s00415-005-0912-ySearch in Google Scholar PubMed

[52] Hauke J., Riessland M., Lunke S., Eyupoglu I. Y., Blumcke I., El-Osta A., et al., Survival motor neuron gene 2 silencing by DNA methylation correlates with spinal muscular atrophy disease severity and can be bypassed by histone deacetylase inhibition, Hum Mol Genet, 2009, 18, 304–317 http://dx.doi.org/10.1093/hmg/ddn35710.1093/hmg/ddn357Search in Google Scholar PubMed PubMed Central

[53] Prior T. W., Krainer A. R., Hua Y., Swoboda K. J., Snyder P. C., Bridgeman S. J., et al., A positive modifier of spinal muscular atrophy in the SMN2 gene, Am J Hum Genet, 2009, 85, 408–413 http://dx.doi.org/10.1016/j.ajhg.2009.08.00210.1016/j.ajhg.2009.08.002Search in Google Scholar PubMed PubMed Central

[54] Avila A. M., Burnett B. G., Taye A. A., Gabanella F., Knight M. A., Hartenstein P., et al., Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy, J Clin Invest, 2007, 117, 659–671 http://dx.doi.org/10.1172/JCI2956210.1172/JCI29562Search in Google Scholar PubMed PubMed Central

[55] Hahnen E., Eyupoglu I. Y., Brichta L., Haastert K., Trankle C., Siebzehnrubl F. A., et al., In vitro and ex vivo evaluation of secondgeneration histone deacetylase inhibitors for the treatment of spinal muscular atrophy, J Neurochem, 2006, 98, 193–202 http://dx.doi.org/10.1111/j.1471-4159.2006.03868.x10.1111/j.1471-4159.2006.03868.xSearch in Google Scholar PubMed

[56] Riessland M., Brichta L., Hahnen E., Wirth B., The benzamide M344, a novel histone deacetylase inhibitor, significantly increases SMN2 RNA/protein levels in spinal muscular atrophy cells, Hum Genet, 2006, 120, 101–110 http://dx.doi.org/10.1007/s00439-006-0186-110.1007/s00439-006-0186-1Search in Google Scholar PubMed

[57] Riessland M., Ackermann B., Forster A., Jakubik M., Hauke J., Garbes L., et al., SAHA ameliorates the SMA phenotype in two mouse models for spinal muscular atrophy, Hum Mol Genet, 2010, 19, 1492–1506 http://dx.doi.org/10.1093/hmg/ddq02310.1093/hmg/ddq023Search in Google Scholar PubMed

[58] Garbes L., Riessland M., Holker I., Heller R., Hauke J., Trankle C., et al., LBH589 induces up to 10-fold SMN protein levels by several independent mechanisms and is effective even in cells from SMA patients non-responsive to valproate, Hum Mol Genet, 2009, 18, 3645–3658 http://dx.doi.org/10.1093/hmg/ddp31310.1093/hmg/ddp313Search in Google Scholar PubMed

[59] Dayangac-Erden D., Bora G., Ayhan P., Kocaefe C., Dalkara S., Yelekci K., et al., Histone deacetylase inhibition activity and molecular docking of (e)-resveratrol: its therapeutic potential in spinal muscular atrophy, Chem Biol Drug Des, 2009, 73, 355–364 http://dx.doi.org/10.1111/j.1747-0285.2009.00781.x10.1111/j.1747-0285.2009.00781.xSearch in Google Scholar PubMed

[60] Yuo C. Y., Lin H. H., Chang Y. S., Yang W. K., Chang J. G., 5-(N-ethyl-Nisopropyl)-amiloride enhances SMN2 exon 7 inclusion and protein expression in spinal muscular atrophy cells, Ann Neurol, 2008, 63, 26–34 http://dx.doi.org/10.1002/ana.2124110.1002/ana.21241Search in Google Scholar PubMed

[61] Cartegni L., Krainer A. R., Correction of disease-associated exon skipping by synthetic exon-specific activators, Nat Struct Biol, 2003, 10, 120–125 http://dx.doi.org/10.1038/nsb88710.1038/nsb887Search in Google Scholar PubMed

[62] Lorson C. L., Androphy E. J., An exonic enhancer is required for inclusion of an essential exon in the SMA-determining gene SMN, Hum Mol Genet, 2000, 9, 259–265 http://dx.doi.org/10.1093/hmg/9.2.25910.1093/hmg/9.2.259Search in Google Scholar PubMed

[63] Zhang M. L., Lorson C. L., Androphy E. J., Zhou J., An in vivo reporter system for measuring increased inclusion of exon 7 in SMN2 mRNA: potential therapy of SMA, Gene Ther, 2001, 8, 1532–1538 http://dx.doi.org/10.1038/sj.gt.330155010.1038/sj.gt.3301550Search in Google Scholar PubMed

[64] Andreassi C., Jarecki J., Zhou J., Coovert D. D., Monani U. R., Chen X., et al., Aclarubicin treatment restores SMN levels to cells derived from type I spinal muscular atrophy patients, Hum Mol Genet, 2001, 10, 2841–2849 http://dx.doi.org/10.1093/hmg/10.24.284110.1093/hmg/10.24.2841Search in Google Scholar PubMed

[65] Ramassamy C., Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets, Eur J Pharmacol, 2006, 545, 51–64 http://dx.doi.org/10.1016/j.ejphar.2006.06.02510.1016/j.ejphar.2006.06.025Search in Google Scholar PubMed

[66] Sakla M. S., Lorson C. L., Induction of full-length survival motor neuron by polyphenol botanical compounds, Hum Genet, 2008, 122, 635–643 http://dx.doi.org/10.1007/s00439-007-0441-010.1007/s00439-007-0441-0Search in Google Scholar PubMed

[67] Skommer J., Wlodkowic D., Pelkonen J., Gene-expression profiling during curcumin-induced apoptosis reveals downregulation of CXCR4, Exp Hematol, 2007, 35, 84–95 http://dx.doi.org/10.1016/j.exphem.2006.09.00610.1016/j.exphem.2006.09.006Search in Google Scholar PubMed

[68] Grondard C., Biondi O., Armand A. S., Lecolle S., Della Gaspera B., Pariset C., et al., Regular exercise prolongs survival in a type 2 spinal muscular atrophy model mouse, J Neurosci, 2005, 25, 7615–7622 http://dx.doi.org/10.1523/JNEUROSCI.1245-05.200510.1523/JNEUROSCI.1245-05.2005Search in Google Scholar PubMed PubMed Central

[69] Biondi O., Grondard C., Lecolle S., Deforges S., Pariset C., Lopes P., et al., Exercise-induced activation of NMDA receptor promotes motor unit development and survival in a type 2 spinal muscular atrophy model mouse, J Neurosci, 2008, 28, 953–962 http://dx.doi.org/10.1523/JNEUROSCI.3237-07.200810.1523/JNEUROSCI.3237-07.2008Search in Google Scholar PubMed PubMed Central

[70] Biondi O., Branchu J., Sanchez G., Lancelin C., Deforges S., Lopes P., et al., In vivo NMDA receptor activation accelerates motor unit maturation, protects spinal motor neurons, and enhances SMN2 gene expression in severe spinal muscular atrophy mice, J Neurosci, 2010, 30, 11288–11299 http://dx.doi.org/10.1523/JNEUROSCI.1764-10.201010.1523/JNEUROSCI.1764-10.2010Search in Google Scholar PubMed PubMed Central

[71] Majumder S., Varadharaj S., Ghoshal K., Monani U., Burghes A. H., Jacob S. T., Identification of a novel cyclic AMP-response element (CRE-II) and the role of CREB-1 in the cAMP-induced expression of the survival motor neuron (SMN) gene, J Biol Chem, 2004, 279, 14803–14811 http://dx.doi.org/10.1074/jbc.M30822520010.1074/jbc.M308225200Search in Google Scholar PubMed PubMed Central

[72] Skordis L. A., Dunckley M. G., Yue B., Eperon I. C., Muntoni F., Bifunctional antisense oligonucleotides provide a trans-acting splicing enhancer that stimulates SMN2 gene expression in patient fibroblasts, Proc Natl Acad Sci U S A, 2003, 100, 4114–4119 http://dx.doi.org/10.1073/pnas.063386310010.1073/pnas.0633863100Search in Google Scholar PubMed PubMed Central

[73] Singh N. K., Singh N. N., Androphy E. J., Singh R. N., Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron, Mol Cell Biol, 2006, 26, 1333–1346 http://dx.doi.org/10.1128/MCB.26.4.1333-1346.200610.1128/MCB.26.4.1333-1346.2006Search in Google Scholar PubMed PubMed Central

[74] Williams J. H., Schray R. C., Patterson C. A., Ayitey S. O., Tallent M. K., Lutz G. J., Oligonucleotide-mediated survival of motor neuron protein expression in CNS improves phenotype in a mouse model of spinal muscular atrophy, J Neurosci, 2009, 29, 7633–7638 http://dx.doi.org/10.1523/JNEUROSCI.0950-09.200910.1523/JNEUROSCI.0950-09.2009Search in Google Scholar PubMed PubMed Central

[75] Hua Y., Sahashi K., Hung G., Rigo F., Passini M. A., Bennett C. F., et al., Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model, Genes Dev, 2010, 24, 1634–1644 http://dx.doi.org/10.1101/gad.194131010.1101/gad.1941310Search in Google Scholar PubMed PubMed Central

[76] Baughan T. D., Dickson A., Osman E. Y., Lorson C. L., Delivery of bifunctional RNAs that target an intronic repressor and increase SMN levels in an animal model of spinal muscular atrophy, Hum Mol Genet, 2009, 18, 1600–1611 http://dx.doi.org/10.1093/hmg/ddp07610.1093/hmg/ddp076Search in Google Scholar PubMed PubMed Central

[77] Coady T. H., Lorson C. L., Trans-splicing-mediated improvement in a severe mouse model of spinal muscular atrophy, J Neurosci, 2010, 30, 126–130 http://dx.doi.org/10.1523/JNEUROSCI.4489-09.201010.1523/JNEUROSCI.4489-09.2010Search in Google Scholar PubMed PubMed Central

[78] Hastings M. L., Berniac J., Liu Y. H., Abato P., Jodelka F. M., Barthel L., et al., Tetracyclines that promote SMN2 exon 7 splicing as therapeutics for spinal muscular atrophy, Sci Transl Med, 2009, 1, 5ra12 10.1126/scitranslmed.3000208Search in Google Scholar PubMed PubMed Central

[79] Wolstencroft E. C., Mattis V., Bajer A. A., Young P. J., Lorson C. L., A nonsequence-specific requirement for SMN protein activity: the role of aminoglycosides in inducing elevated SMN protein levels, Hum Mol Genet, 2005, 14, 1199–1210 http://dx.doi.org/10.1093/hmg/ddi13110.1093/hmg/ddi131Search in Google Scholar PubMed

[80] Mattis V. B., Rai R., Wang J., Chang C. W., Coady T., Lorson C. L., Novel aminoglycosides increase SMN levels in spinal muscular atrophy fibroblasts, Hum Genet, 2006, 120, 589–601 http://dx.doi.org/10.1007/s00439-006-0245-710.1007/s00439-006-0245-7Search in Google Scholar PubMed

[81] Mattis V. B., Ebert A. D., Fosso M. Y., Chang C. W., Lorson C. L., Delivery of a read-through inducing compound, TC007, lessens the severity of a spinal muscular atrophy animal model, Hum Mol Genet, 2009, 18, 3906–3913 http://dx.doi.org/10.1093/hmg/ddp33310.1093/hmg/ddp333Search in Google Scholar PubMed PubMed Central

[82] Mattis V. B., Ebert A. D., Fosso M. Y., Chang C. W., Lorson C. L., Delivery of a read-through inducing compound, TC007, lessens the severity of a spinal muscular atrophy animal model, Hum Mol Genet, 2009, 18, 3906–3913 http://dx.doi.org/10.1093/hmg/ddp33310.1093/hmg/ddp333Search in Google Scholar

[83] Heier C. R., DiDonato C. J., Translational readthrough by the aminoglycoside geneticin (G418) modulates SMN stability in vitro and improves motor function in SMA mice in vivo, Hum Mol Genet, 2009, 18, 1310–1322 http://dx.doi.org/10.1093/hmg/ddp03010.1093/hmg/ddp030Search in Google Scholar PubMed PubMed Central

[84] Butchbach M. E., Singh J., Thorsteinsdottir M., Saieva L., Slominski E., Thurmond J., et al., Effects of 2,4-diaminoquinazoline derivatives on SMN expression and phenotype in a mouse model for spinal muscular atrophy, Hum Mol Genet, 2010, 19, 454–467 http://dx.doi.org/10.1093/hmg/ddp51010.1093/hmg/ddp510Search in Google Scholar PubMed PubMed Central

[85] Lunn M. R., Root D. E., Martino A. M., Flaherty S. P., Kelley B. P., Coovert D. D., et al., Indoprofen upregulates the survival motor neuron protein through a cyclooxygenase-independent mechanism, Chem Biol, 2004, 11, 1489–1493 http://dx.doi.org/10.1016/j.chembiol.2004.08.02410.1016/j.chembiol.2004.08.024Search in Google Scholar PubMed PubMed Central

[86] Burnett B. G., Munoz E., Tandon A., Kwon D. Y., Sumner C. J., Fischbeck K. H., Regulation of SMN protein stability, Mol Cell Biol, 2009, 29, 1107–1115 http://dx.doi.org/10.1128/MCB.01262-0810.1128/MCB.01262-08Search in Google Scholar PubMed PubMed Central

[87] Chang H. C., Hung W. C., Chuang Y. J., Jong Y. J., Degradation of survival motor neuron (SMN) protein is mediated via the ubiquitin/proteasome pathway, Neurochem Int, 2004, 45, 1107–1112 http://dx.doi.org/10.1016/j.neuint.2004.04.00510.1016/j.neuint.2004.04.005Search in Google Scholar PubMed

[88] Thoenen H., Hughes R. A., Sendtner M., Trophic support of motoneurons: physiological, pathophysiological, and therapeutic implications, Exp Neurol, 1993, 124, 47–55 http://dx.doi.org/10.1006/exnr.1993.117310.1006/exnr.1993.1173Search in Google Scholar PubMed

[89] Bryson H. M., Fulton B., Benfield P., Riluzole. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in amyotrophic lateral sclerosis, Drugs, 1996, 52, 549–563 http://dx.doi.org/10.2165/00003495-199652040-0001010.2165/00003495-199652040-00010Search in Google Scholar PubMed

[90] Merlini L., Solari A., Vita G., Bertini E., Minetti C., Mongini T., et al., Role of gabapentin in spinal muscular atrophy: results of a multicenter, randomized Italian study, J Child Neurol, 2003, 18, 537–541 http://dx.doi.org/10.1177/0883073803018008050110.1177/08830738030180080501Search in Google Scholar PubMed

[91] Haddad H., Cifuentes-Diaz C., Miroglio A., Roblot N., Joshi V., Melki J., Riluzole attenuates spinal muscular atrophy disease progression in a mouse model, Muscle Nerve, 2003, 28, 432–437 http://dx.doi.org/10.1002/mus.1045510.1002/mus.10455Search in Google Scholar PubMed

[92] Russman B. S., Iannaccone S. T., Samaha F. J., A phase 1 trial of riluzole in spinal muscular atrophy, Arch Neurol, 2003, 60, 1601–1603 http://dx.doi.org/10.1001/archneur.60.11.160110.1001/archneur.60.11.1601Search in Google Scholar PubMed

[93] Bach J. R., The use of mechanical ventilation is appropriate in children with genetically proven spinal muscular atrophy type 1: the motion for, Paediatr Respir Rev, 2008, 9, 45–50; quiz 50; discussion 55–46 http://dx.doi.org/10.1016/j.prrv.2007.11.00310.1016/j.prrv.2007.11.003Search in Google Scholar PubMed

[94] Bosboom W. M., Vrancken A. F., van den Berg L. H., Wokke J. H., Iannaccone S. T., Drug treatment for spinal muscular atrophy type I, Cochrane Database Syst Rev, 2009, CD006281 10.1002/14651858.CD006281.pub2Search in Google Scholar

[95] Ryan M. M., The use of invasive ventilation is appropriate in children with genetically proven spinal muscular atrophy type 1: the motion against, Paediatr Respir Rev, 2008, 9, 51–54; discussion 55–56 http://dx.doi.org/10.1016/j.prrv.2007.10.00210.1016/j.prrv.2007.10.002Search in Google Scholar

[96] Bessman S. P., Geiger P. J., Transport of energy in muscle: the phosphorylcreatine shuttle, Science, 1981, 211, 448–452 http://dx.doi.org/10.1126/science.645044610.1126/science.6450446Search in Google Scholar

[97] Ellis A. C., Rosenfeld J., The role of creatine in the management of amyotrophic lateral sclerosis and other neurodegenerative disorders, CNS Drugs, 2004, 18, 967–980 http://dx.doi.org/10.2165/00023210-200418140-0000210.2165/00023210-200418140-00002Search in Google Scholar

[98] Tarnopolsky M., Martin J., Creatine monohydrate increases strength in patients with neuromuscular disease, Neurology, 1999, 52, 854–857 10.1212/WNL.52.4.854Search in Google Scholar

[99] Wong B., Hynan L.S., Iannaccone S.T., AmSMART Group, A randomized, placebo-controlled trial of creatine in children with spinal muscular atrophy, J Clin Neuromuscul Dis, 2007, 8, 101–110 http://dx.doi.org/10.1097/CND.0b013e3180315c9910.1097/CND.0b013e3180315c99Search in Google Scholar

[100] Greensmith L., Vrbova G., Possible strategies for treatment of SMA patients: a neurobiologist’s view, Neuromuscul Disord, 1995, 5, 359–369 http://dx.doi.org/10.1016/0960-8966(94)00090-V10.1016/0960-8966(94)00090-VSearch in Google Scholar

[101] Taylor J. E., Thomas N. H., Lewis C. M., Abbs S. J., Rodrigues N. R., Davies K. E., et al., Correlation of SMNt and SMNc gene copy number with age of onset and survival in spinal muscular atrophy, Eur J Hum Genet, 1998, 6, 467–474 http://dx.doi.org/10.1038/sj.ejhg.520021010.1038/sj.ejhg.5200210Search in Google Scholar

[102] Miller R. G., Moore D. H., Dronsky V., Bradley W., Barohn R., Bryan W., et al., A placebo-controlled trial of gabapentin in spinal muscular atrophy, J Neurol Sci, 2001, 191, 127–131 http://dx.doi.org/10.1016/S0022-510X(01)00632-310.1016/S0022-510X(01)00632-3Search in Google Scholar

[103] Bresolin N., Freddo L., Tegazzin V., Bet L., Armani M., Angelini C., Carnitine and acyltransferase in experimental neurogenic atrophies: changes with treatment, J Neurol, 1984, 231, 170–175 http://dx.doi.org/10.1007/BF0031393310.1007/BF00313933Search in Google Scholar PubMed

[104] Bigini P., Larini S., Pasquali C., Muzio V., Mennini T., Acetyl-L-carnitine shows neuroprotective and neurotrophic activity in primary culture of rat embryo motoneurons, Neurosci Lett, 2002, 329, 334–338 http://dx.doi.org/10.1016/S0304-3940(02)00667-510.1016/S0304-3940(02)00667-5Search in Google Scholar

[105] Oppenheim R. W., Wiese S., Prevette D., Armanini M., Wang S., Houenou L. J., et al., Cardiotrophin-1, a muscle-derived cytokine, is required for the survival of subpopulations of developing motoneurons, J Neurosci, 2001, 21, 1283–1291 10.1523/JNEUROSCI.21-04-01283.2001Search in Google Scholar

[106] Lesbordes J. C., Cifuentes-Diaz C., Miroglio A., Joshi V., Bordet T., Kahn A., et al., Therapeutic benefits of cardiotrophin-1 gene transfer in a mouse model of spinal muscular atrophy, Hum Mol Genet, 2003, 12, 1233–1239 http://dx.doi.org/10.1093/hmg/ddg14310.1093/hmg/ddg143Search in Google Scholar PubMed

[107] Takeuchi Y., Miyanomae Y., Komatsu H., Oomizono Y., Nishimura A., Okano S., et al., Efficacy of thyrotropin-releasing hormone in the treatment of spinal muscular atrophy, J Child Neurol, 1994, 9, 287–289 http://dx.doi.org/10.1177/08830738940090031310.1177/088307389400900313Search in Google Scholar PubMed

[108] Tzeng A. C., Cheng J., Fryczynski H., Niranjan V., Stitik T., Sial A., et al., A study of thyrotropin-releasing hormone for the treatment of spinal muscular atrophy: a preliminary report, Am J Phys Med Rehabil, 2000, 79, 435–440 http://dx.doi.org/10.1097/00002060-200009000-0000510.1097/00002060-200009000-00005Search in Google Scholar PubMed

[109] Bosboom W. M., Vrancken A. F., van den Berg L. H., Wokke J. H., Iannaccone S. T., Drug treatment for spinal muscular atrophy types II and III, Cochrane Database Syst Rev, 2009, CD006282 10.1002/14651858.CD006282.pub2Search in Google Scholar PubMed

[110] Kato Z., Okuda M., Okumura Y., Arai T., Teramoto T., Nishimura M., et al., Oral administration of the thyrotropin-releasing hormone (TRH) analogue, taltireline hydrate, in spinal muscular atrophy, J Child Neurol, 2009, 24, 1010–1012 http://dx.doi.org/10.1177/088307380933353510.1177/0883073809333535Search in Google Scholar PubMed

[111] Caruso J. F., Signorile J. F., Perry A. C., Leblanc B., Williams R., Clark M., et al., The effects of albuterol and isokinetic exercise on the quadriceps muscle group, Med Sci Sports Exerc, 1995, 27, 1471–1476 10.1249/00005768-199511000-00002Search in Google Scholar

[112] Kindermann W., Do inhaled beta(2)-agonists have an ergogenic potential in non-asthmatic competitive athletes?, Sports Med, 2007, 37, 95–102 http://dx.doi.org/10.2165/00007256-200737020-0000110.2165/00007256-200737020-00001Search in Google Scholar PubMed

[113] Martineau L., Horan M. A., Rothwell N. J., Little R. A., Salbutamol, a beta 2-adrenoceptor agonist, increases skeletal muscle strength in young men, Clin Sci (Lond), 1992, 83, 615–621 10.1042/cs0830615Search in Google Scholar PubMed

[114] Angelozzi C., Borgo F., Tiziano F. D., Martella A., Neri G., Brahe C., Salbutamol increases SMN mRNA and protein levels in spinal muscular atrophy cells, J Med Genet, 2008, 45, 29–31 http://dx.doi.org/10.1136/jmg.2007.05117710.1136/jmg.2007.051177Search in Google Scholar

[115] Kinali M., Mercuri E., Main M., De Biasia F., Karatza A., Higgins R., et al., Pilot trial of albuterol in spinal muscular atrophy, Neurology, 2002, 59, 609–610 10.1212/WNL.59.4.609Search in Google Scholar

[116] Pane M., Staccioli S., Messina S., D’Amico A., Pelliccioni M., Mazzone E. S., et al., Daily salbutamol in young patients with SMA type II, Neuromuscul Disord, 2008, 18, 536–540 http://dx.doi.org/10.1016/j.nmd.2008.05.00410.1016/j.nmd.2008.05.004Search in Google Scholar

[117] Tiziano F. D., Lomastro R., Pinto A. M., Messina S., D’Amico A., Fiori S., et al., Salbutamol increases survival motor neuron (SMN) transcript levels in leucocytes of spinal muscular atrophy (SMA) patients: relevance for clinical trial design, J Med Genet, 2010, 47, 856–858 http://dx.doi.org/10.1136/jmg.2010.08036610.1136/jmg.2010.080366Search in Google Scholar

[118] Franz D.N., Tudor C.A., Samaha F.J., A phase I trial of recombinant human ciliary neurotrophic factor in spinal muscular atrophy, Ann Neurol, 1995, 38, 546 Search in Google Scholar

[119] Lee S. J., Quadrupling muscle mass in mice by targeting TGF-beta signaling pathways, PLoS One, 2007, 2, e789 http://dx.doi.org/10.1371/journal.pone.000078910.1371/journal.pone.0000789Search in Google Scholar

[120] Rose F. F., Jr., Mattis V. B., Rindt H., Lorson C. L., Delivery of recombinant follistatin lessens disease severity in a mouse model of spinal muscular atrophy, Hum Mol Genet, 2009, 18, 997–1005 http://dx.doi.org/10.1093/hmg/ddn42610.1093/hmg/ddn426Search in Google Scholar

[121] Sumner C. J., Wee C. D., Warsing L. C., Choe D. W., Ng A. S., Lutz C., et al., Inhibition of myostatin does not ameliorate disease features of severe spinal muscular atrophy mice, Hum Mol Genet, 2009, 18, 3145–3152 http://dx.doi.org/10.1093/hmg/ddp25310.1093/hmg/ddp253Search in Google Scholar

[122] Stavarachi M., Apostol P., Toma M., Cimponeriu D., Gavrila L., Spinal muscular atrophy disease: a literature review for therapeutic strategies, J Med Life, 2010, 3, 3–9 Search in Google Scholar

[123] Gao J., Coggeshall R. E., Chung J. M., Wang J., Wu P., Functional motoneurons develop from human neural stem cell transplants in adult rats, Neuroreport, 2007, 18, 565–569 http://dx.doi.org/10.1097/WNR.0b013e3280b10c2c10.1097/WNR.0b013e3280b10c2cSearch in Google Scholar

[124] Wichterle H., Lieberam I., Porter J. A., Jessell T. M., Directed differentiation of embryonic stem cells into motor neurons, Cell, 2002, 110, 385–397 http://dx.doi.org/10.1016/S0092-8674(02)00835-810.1016/S0092-8674(02)00835-8Search in Google Scholar

[125] Deshpande D. M., Kim Y. S., Martinez T., Carmen J., Dike S., Shats I., et al., Recovery from paralysis in adult rats using embryonic stem cells, Ann Neurol, 2006, 60, 32–44 http://dx.doi.org/10.1002/ana.2090110.1002/ana.20901Search in Google Scholar PubMed

[126] Harper J. M., Krishnan C., Darman J. S., Deshpande D. M., Peck S., Shats I., et al., Axonal growth of embryonic stem cell-derived motoneurons in vitro and in motoneuron-injured adult rats, Proc Natl Acad Sci U S A, 2004, 101, 7123–7128 http://dx.doi.org/10.1073/pnas.040110310110.1073/pnas.0401103101Search in Google Scholar PubMed PubMed Central

[127] Corti S., Nizzardo M., Nardini M., Donadoni C., Salani S., Ronchi D., et al., Neural stem cell transplantation can ameliorate the phenotype of a mouse model of spinal muscular atrophy, J Clin Invest, 2008, 118, 3316–3330 http://dx.doi.org/10.1172/JCI3543210.1172/JCI35432Search in Google Scholar PubMed PubMed Central

[128] Flax J. D., Aurora S., Yang C., Simonin C., Wills A. M., Billinghurst L. L., et al., Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes, Nat Biotechnol, 1998, 16, 1033–1039 http://dx.doi.org/10.1038/347310.1038/3473Search in Google Scholar PubMed

[129] Lee J. P., Jeyakumar M., Gonzalez R., Takahashi H., Lee P. J., Baek R. C., et al., Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease, Nat Med, 2007, 13, 439–447 http://dx.doi.org/10.1038/nm154810.1038/nm1548Search in Google Scholar PubMed

[130] Park K. I., Teng Y. D., Snyder E. Y., The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue, Nat Biotechnol, 2002, 20, 1111–1117 http://dx.doi.org/10.1038/nbt75110.1038/nbt751Search in Google Scholar PubMed

[131] Nayak M. S., Kim Y. S., Goldman M., Keirstead H. S., Kerr D. A., Cellular therapies in motor neuron diseases, Biochim Biophys Acta, 2006, 1762, 1128–1138 10.1016/j.bbadis.2006.06.004Search in Google Scholar PubMed

[132] Corti S., Nizzardo M., Nardini M., Donadoni C., Salani S., Ronchi D., et al., Embryonic stem cell-derived neural stem cells improve spinal muscular atrophy phenotype in mice, Brain, 2010, 133, 465–481 http://dx.doi.org/10.1093/brain/awp31810.1093/brain/awp318Search in Google Scholar PubMed

[133] Azzouz M., Le T., Ralph G. S., Walmsley L., Monani U. R., Lee D. C., et al., Lentivector-mediated SMN replacement in a mouse model of spinal muscular atrophy, J Clin Invest, 2004, 114, 1726–1731 10.1172/JCI22922Search in Google Scholar PubMed PubMed Central

[134] Baughan T., Shababi M., Coady T. H., Dickson A. M., Tullis G. E., Lorson C. L., Stimulating full-length SMN2 expression by delivering bifunctional RNAs via a viral vector, Mol Ther, 2006, 14, 54–62 http://dx.doi.org/10.1016/j.ymthe.2006.01.01210.1016/j.ymthe.2006.01.012Search in Google Scholar PubMed

[135] Baughan T. D., Dickson A., Osman E. Y., Lorson C. L., Delivery of bifunctional RNAs that target an intronic repressor and increase SMN levels in an animal model of spinal muscular atrophy, Hum Mol Genet, 2009, 18, 1600–1611 http://dx.doi.org/10.1093/hmg/ddp07610.1093/hmg/ddp076Search in Google Scholar PubMed PubMed Central

[136] Madocsai C., Lim S. R., Geib T., Lam B. J., Hertel K. J., Correction of SMN2 Pre-mRNA splicing by antisense U7 small nuclear RNAs, Mol Ther, 2005, 12, 1013–1022 http://dx.doi.org/10.1016/j.ymthe.2005.08.02210.1016/j.ymthe.2005.08.022Search in Google Scholar PubMed

[137] Geib T., Hertel K. J., Restoration of full-length SMN promoted by adenoviral vectors expressing RNA antisense oligonucleotides embedded in U7 snRNAs, PLoS One, 2009, 4, e8204 http://dx.doi.org/10.1371/journal.pone.000820410.1371/journal.pone.0008204Search in Google Scholar PubMed PubMed Central

[138] Meyer K., Marquis J., Trub J., Nlend Nlend R., Verp S., Ruepp M. D., et al., Rescue of a severe mouse model for spinal muscular atrophy by U7 snRNA-mediated splicing modulation, Hum Mol Genet, 2009, 18, 546–555 http://dx.doi.org/10.1093/hmg/ddn38210.1093/hmg/ddn382Search in Google Scholar PubMed

[139] Valori C. F., Ning K., Wyles M., Mead R. J., Grierson A. J., Shaw P. J., et al., Systemic delivery of scAAV9 expressing SMN prolongs survival in a model of spinal muscular atrophy, Sci Transl Med, 2010, 2, 35ra42 10.1126/scitranslmed.3000830Search in Google Scholar PubMed

[140] Bevan A. K., Hutchinson K. R., Foust K. D., Braun L., McGovern V. L., Schmelzer L., et al., Early heart failure in the SMNΔ7 model of spinal muscular atrophy and correction by postnatal scAAV9-SMN delivery, Hum Mol Genet, 2010, 19, 3895–3905 http://dx.doi.org/10.1093/hmg/ddq30010.1093/hmg/ddq300Search in Google Scholar PubMed PubMed Central

[141] Passini M. A., Bu J., Roskelley E. M., Richards A. M., Sardi S. P., O’Riordan C. R., et al., CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy, J Clin Invest, 2010, 120, 1253–1264 http://dx.doi.org/10.1172/JCI4161510.1172/JCI41615Search in Google Scholar PubMed PubMed Central

[142] Foust K. D., Wang X., McGovern V. L., Braun L., Bevan A. K., Haidet A. M., et al., Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN, Nat Biotechnol, 2010, 28, 271–274 http://dx.doi.org/10.1038/nbt.161010.1038/nbt.1610Search in Google Scholar PubMed PubMed Central

[143] Liu X., Jiang Q., Mansfield S. G., Puttaraju M., Zhang Y., Zhou W., et al., Partial correction of endogenous DeltaF508 CFTR in human cystic fibrosis airway epithelia by spliceosome-mediated RNA transsplicing, Nat Biotechnol, 2002, 20, 47–52 10.1038/nbt0102-47Search in Google Scholar PubMed

[144] Rodriguez-Martin T., Garcia-Blanco M. A., Mansfield S. G., Grover A. C., Hutton M., Yu Q., et al., Reprogramming of tau alternative splicing by spliceosome-mediated RNA trans-splicing: implications for tauopathies, Proc Natl Acad Sci U S A, 2005, 102, 15659–15664 http://dx.doi.org/10.1073/pnas.050315010210.1073/pnas.0503150102Search in Google Scholar PubMed PubMed Central

[145] Coady T. H., Shababi M., Tullis G. E., Lorson C. L., Restoration of SMN function: delivery of a trans-splicing RNA re-directs SMN2 pre-mRNA splicing, Mol Ther, 2007, 15, 1471–1478 http://dx.doi.org/10.1038/sj.mt.630022210.1038/sj.mt.6300222Search in Google Scholar PubMed

[146] Ning K., Drepper C., Valori C. F., Ahsan M., Wyles M., Higginbottom A., et al., PTEN depletion rescues axonal growth defect and improves survival in SMN-deficient motor neurons, Hum Mol Genet, 2010, 19, 3159–3168 http://dx.doi.org/10.1093/hmg/ddq22610.1093/hmg/ddq226Search in Google Scholar

[147] Kirkinezos I. G., Hernandez D., Bradley W. G., Moraes C. T., Regular exercise is beneficial to a mouse model of amyotrophic lateral sclerosis, Ann Neurol, 2003, 53, 804–807 http://dx.doi.org/10.1002/ana.1059710.1002/ana.10597Search in Google Scholar

[148] Mahoney D. J., Rodriguez C., Devries M., Yasuda N., Tarnopolsky M. A., Effects of high-intensity endurance exercise training in the G93A mouse model of amyotrophic lateral sclerosis, Muscle Nerve, 2004, 29, 656–662 http://dx.doi.org/10.1002/mus.2000410.1002/mus.20004Search in Google Scholar

[149] Hsieh-Li H. M., Chang J. G., Jong Y. J., Wu M. H., Wang N. M., Tsai C. H., et al., A mouse model for spinal muscular atrophy, Nat Genet, 2000, 24, 66–70 http://dx.doi.org/10.1038/7170910.1038/71709Search in Google Scholar

[150] Butchbach M. E., Rose F. F., Jr., Rhoades S., Marston J., McCrone J. T., Sinnott R., et al., Effect of diet on the survival and phenotype of a mouse model for spinal muscular atrophy, Biochem Biophys Res Commun, 2010, 391, 835–840 http://dx.doi.org/10.1016/j.bbrc.2009.11.14810.1016/j.bbrc.2009.11.148Search in Google Scholar

[151] Bertini E., Burghes A., Bushby K., Estournet-Mathiaud B., Finkel R. S., Hughes R. A., et al., 134th ENMC International Workshop: Outcome Measures and Treatment of Spinal Muscular Atrophy, 11–13 February 2005, Naarden, The Netherlands, Neuromuscul Disord, 2005, 15, 802–816 http://dx.doi.org/10.1016/j.nmd.2005.07.00510.1016/j.nmd.2005.07.005Search in Google Scholar

[152] Hirtz D., Iannaccone S., Heemskerk J., Gwinn-Hardy K., Moxley R., 3rd, Rowland L. P., Challenges and opportunities in clinical trials for spinal muscular atrophy, Neurology, 2005, 65, 1352–1357 http://dx.doi.org/10.1212/01.wnl.0000183282.10946.c710.1212/01.wnl.0000183282.10946.c7Search in Google Scholar

[153] Iannaccone S. T., Hynan L. S., Reliability of 4 outcome measures in pediatric spinal muscular atrophy, Arch Neurol, 2003, 60, 1130–1136 http://dx.doi.org/10.1001/archneur.60.8.113010.1001/archneur.60.8.1130Search in Google Scholar

[154] Main M., Kairon H., Mercuri E., Muntoni F., The Hammersmith functional motor scale for children with spinal muscular atrophy: a scale to test ability and monitor progress in children with limited ambulation, Eur J Paediatr Neurol, 2003, 7, 155–159 http://dx.doi.org/10.1016/S1090-3798(03)00060-610.1016/S1090-3798(03)00060-6Search in Google Scholar

[155] Mercuri E., Messina S., Battini R., Berardinelli A., Boffi P., Bono R., et al., Reliability of the Hammersmith functional motor scale for spinal muscular atrophy in a multicentric study, Neuromuscul Disord, 2006, 16, 93–98 http://dx.doi.org/10.1016/j.nmd.2005.11.01010.1016/j.nmd.2005.11.010Search in Google Scholar PubMed

[156] Merlini L., Bertini E., Minetti C., Mongini T., Morandi L., Angelini C., et al., Motor function-muscle strength relationship in spinal muscular atrophy, Muscle Nerve, 2004, 29, 548–552 http://dx.doi.org/10.1002/mus.2001810.1002/mus.20018Search in Google Scholar

[157] De Gruttola V. G., Clax P., DeMets D. L., Downing G. J., Ellenberg S. S., Friedman L., et al., Considerations in the evaluation of surrogate endpoints in clinical trials. summary of a National Institutes of Health workshop, Control Clin Trials, 2001, 22, 485–502 http://dx.doi.org/10.1016/S0197-2456(01)00153-210.1016/S0197-2456(01)00153-2Search in Google Scholar

[158] Lesko L. J., Atkinson A. J., Jr., Use of biomarkers and surrogate endpoints in drug development and regulatory decision making: criteria, validation, strategies, Annu Rev Pharmacol Toxicol, 2001, 41, 347–366 http://dx.doi.org/10.1146/annurev.pharmtox.41.1.34710.1146/annurev.pharmtox.41.1.347Search in Google Scholar PubMed

[159] Sproule D.M., Kaufmann P., Therapeutic developments in spinal muscular atrophy, Ther Adv Neurol Disorders, 2010, 3, 173–185 http://dx.doi.org/10.1177/175628561036902610.1177/1756285610369026Search in Google Scholar PubMed PubMed Central

Published Online: 2010-12-31
Published in Print: 2010-12-1

© 2010 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 13.6.2024 from https://www.degruyter.com/document/doi/10.2478/v10134-010-0045-4/html
Scroll to top button