Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access May 29, 2014

Relationship between MODIS based Aerosol Optical Depth and PM10 over Croatia

  • Sanja Grgurić EMAIL logo , Josip Križan , Goran Gašparac , Oleg Antonić , Zdravko Špirić , Rodelise Mamouri , A. Christodoulou , Argyro Nisantzi , Athos Agapiou , Kyriakos Themistocleous , Kurt Fedra , Charalambos Panayiotou and Diofantos Hadjimitsis
From the journal Open Geosciences

Abstract

This study analyzes the relationship between Aerosol Optical Depth (AOD) obtained from Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and ground-based PM10 mass concentration distribution over a period of 5 years (2008–2012), and investigates the applicability of satellite AOD data for ground PM10 mapping for the Croatian territory. Many studies have shown that satellite AOD data are correlated to ground-based PM mass concentration. However, the relationship between AOD and PM is not explicit and there are unknowns that cause uncertainties in this relationship.

The relationship between MODIS AOD and ground-based PM10 has been studied on the basis of a large data set where daily averaged PM10 data from the 12 air quality stations across Croatia over the 5 year period are correlated with AODs retrieved from MODIS Terra and Aqua. A database was developed to associate coincident MODIS AOD (independent) and PM10 data (dependent variable). Additional tested independent variables (predictors, estimators) included season, cloud fraction, and meteorological parameters — including temperature, air pressure, relative humidity, wind speed, wind direction, as well as planetary boundary layer height — using meteorological data from WRF (Weather Research and Forecast) model.

It has been found that 1) a univariate linear regression model fails at explaining the data variability well which suggests nonlinearity of the AOD-PM10 relationship, and 2) explanation of data variability can be improved with multivariate linear modeling and a neural network approach, using additional independent variables.

[1] European Environment Agency. The European environment — state and outlook. Luxembourg: Publications Office of the European Union, 2010, ISBN 978-92-9213-152-4, doi:10.2800/57792 (2010) Search in Google Scholar

[2] Croatian Environment Agency. Annual report of air quality monitoring in Croatia for 2011. Document number: 25-12-2212/55 (2011) (www.azo.hr) Search in Google Scholar

[3] Villeneuve P.J., Goldberg M.S., Krewski D., Burnett R.T., Chen Y., Fine particulate air pollution and all-cause mortality within the Harward six-cities study:variations in risk by period of exposure. Annals of Epidemiology, 2002, 12, 568–576 http://dx.doi.org/10.1016/S1047-2797(01)00292-710.1016/S1047-2797(01)00292-7Search in Google Scholar

[4] Tian J., Chen D., Spectral, spatial, and temporal sensitivity of correlating MODIS aerosol optical depth with ground-based fine particulate matter (PM2.5) across southern Ontario. Can. J. Remote Sensing, 2010, 36, 119–128 http://dx.doi.org/10.5589/m10-03310.5589/m10-033Search in Google Scholar

[5] Koelemeijer R.B.A., Homan C.D., Matthijsen, J., Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe. Atmospheric Environment, 2006, 40, 5304–5315 http://dx.doi.org/10.1016/j.atmosenv.2006.04.04410.1016/j.atmosenv.2006.04.044Search in Google Scholar

[6] Al-Saadi J., Szykman J., Pierce R. B., Kittaka C., Neil D., Chu D. A., Remer L., Gumley L., Prins E., Weinstock L., MacDonald C., Wayland R., Dimmick F. and Fishman J., Improving national air quality forecasts with satellite aerosol observations. Bulletin of the American Meteorological Society, 2005, 86, 1249–1261, doi:10.1175/BAMS-86-9-1249 http://dx.doi.org/10.1175/BAMS-86-9-124910.1175/BAMS-86-9-1249Search in Google Scholar

[7] Engel-Cox J.A., Holloman C.H., Coutant B.W., Hoff R.M., Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmos. Environ., 2004, 38, 2495–2509 http://dx.doi.org/10.1016/j.atmosenv.2004.01.03910.1016/j.atmosenv.2004.01.039Search in Google Scholar

[8] Chu D.A., Kaufman Y.J., Zibordi G., Chern J.D., Mao J., Li C., Holben B.N., Global monitoring of air pollution over land from the Earth Observing System-Terra Moderate Resolution Imaging Spectrora-diometer (MODIS), J. Geophys. Res., 2003, 108(D21), 4661, doi:10.1029/2002JD003179 http://dx.doi.org/10.1029/2002JD00317910.1029/2002JD003179Search in Google Scholar

[9] Wang J., Christopher S.A., Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: implications for air quality studies. Geophysical Research Letters, 2003, 30, 2095 http://dx.doi.org/10.1029/2003GL01817410.1029/2003GL018174Search in Google Scholar

[10] Gupta P., Christopher S.A., Wang J., Gehrig R., Lee Y.C., Kumar N., Satellite remote sensing of particulate matter and air quality over global cities. Atmos. Environ., 2006, 40, 5880–5892 http://dx.doi.org/10.1016/j.atmosenv.2006.03.01610.1016/j.atmosenv.2006.03.016Search in Google Scholar

[11] Dinoi A., Perrone M.R., Burlizz P., Application of MODIS Products for Air quality studies Over Southeastern Italy. Remote Sens., 2010, 2, 1767–1796 http://dx.doi.org/10.3390/rs207176710.3390/rs2071767Search in Google Scholar

[12] Gupta P., Christopher S.A., Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: 1. Multiple regression approach. J. Geophys. Res., 2009, 114, D14205, doi:10.1029/2008JD011496 http://dx.doi.org/10.1029/2008JD01149610.1029/2008JD011496Search in Google Scholar

[13] Engel-Cox J A., Hoff R.M., Rogers R., Dimmick F., Rush A.C., Szykman J.J., Al-Saadi J., Chu D.A., Zell E.R., Integrating lidar and satellite optical depth with ambient monitoring for 3-dimensional particulate characterization. Atmos. Environ., 2006, 40, 8056–8067 http://dx.doi.org/10.1016/j.atmosenv.2006.02.03910.1016/j.atmosenv.2006.02.039Search in Google Scholar

[14] Li C., Hsu N.C., Tsay S.C., A study of the potential application of satellite data in air quality monitoring and forecasting. Atmos. Environ., 2011, 35, 3663–3675 http://dx.doi.org/10.1016/j.atmosenv.2011.04.03210.1016/j.atmosenv.2011.04.032Search in Google Scholar

[15] Gupta P., Christopher S.A., Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: 2. A neural network approach. J. Geophys. Res., 2009, 114, D20205, doi:10.1029/2008JD011497 http://dx.doi.org/10.1029/2008JD01149710.1029/2008JD011497Search in Google Scholar

[16] Wu Y., Guo J.Z.X., Tian X., Zhang J., Wang Y., Duan J., Li X., Synergy of satellite and ground based observations in estimation of particulate matter in eastern China. Science of the Total Environment, 2012, 433, 20–30 http://dx.doi.org/10.1016/j.scitotenv.2012.06.03310.1016/j.scitotenv.2012.06.033Search in Google Scholar

[17] Levy R.C., Remer L., Tanre D., Matoo S., Kaufman, Y.J., Algorithm for remote sensing of tropospheric aerosol over dark targets from MODIS: collections 005 and 051:Revision 2, 2009. http://modis-atmos.gsfc.nasa.gov/_docs/ATBD_MOD04_C005_rev2.pdf. Search in Google Scholar

[18] Remer L.A., Kaufman Y. J., Tanré D., Mattoo S., Chu D. A., Martins J. V, Li R.-R., Ichoku C., Levy R.C., Kleidman R.G., Eck T.F., Vermote E. and Holben B.N., The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 2005, 62, 947–973, doi:10.1175/JAS3385.1 http://dx.doi.org/10.1175/JAS3385.110.1175/JAS3385.1Search in Google Scholar

[19] Chu D.A., Kaufman Y.J., Ichoku C., Remer L.A., Tanre D., Holben B.N., Validation of MODIS aerosol optical depth retrieval over land. Geophysical research letter, 2002, 29, 10.1029/2001GL013205 10.1029/2001GL013205Search in Google Scholar

[20] Skamarock W.C., Klemp J.B., Dudhia J., Gill D.O., Barker D.M., Wang W., Powers J.G., A description of the Advanced Research WRF Version 2, NCAR/TN-468+STR, NCAR TECHNICAL NOTE, 88., 2007 Search in Google Scholar

[21] Chen F., Janjic Z., K. Mitchell. Impact of atmospheric surface layer parameterization in the new land-surface scheme of the NCEP Mesoscale Eta numerical model. Bound.-Layer Meteor., 1997, 185, 391–421 http://dx.doi.org/10.1023/A:100053100146310.1023/A:1000531001463Search in Google Scholar

[22] Chen F., Dudhia J., Coupling an Advanced Land Surface-Hydrology Model with the Penn State-NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Mon. Wea. Rev., 12001, 29, 569–585 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2Search in Google Scholar

[23] Hong S.Y., Jade J.O., The WRF Single Moment 6 Class Microphysics Sheme (WSM6). Journal of the Korean Meteorological Society, 42,2, 2006, 129–151 Search in Google Scholar

[24] Mlawer E.J., Taubman S.J., Brown P.D., Iacono M.J., Clough S.A., Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave, J. Geophys. Res., 102(D14), 1997, 16663–16682 http://dx.doi.org/10.1029/97JD0023710.1029/97JD00237Search in Google Scholar

[25] Hong S.Y., Dudhia J., Chen S.H., A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation, Mon. Wea. Rev., 2004, 132, 103–120 http://dx.doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;210.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2Search in Google Scholar

[26] Kain J.S., Fritsch J.M., Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The representation of cumulus convection in numerical models. Meteor. Monogr., 1993, 24, 165–170 10.1007/978-1-935704-13-3_16Search in Google Scholar

[27] Hrust L., Klaić B., Križan Z., Antonić J., Hercog O., Neural network forecasting of air pollutants hourly concentrations using optimized temporal averages of meteorological variables and pollutant concentrations. Atm. Environ., 2009, 43, 5588–5596 http://dx.doi.org/10.1016/j.atmosenv.2009.07.04810.1016/j.atmosenv.2009.07.048Search in Google Scholar

[28] Gardner M.V., Dorling S.R., Neural network modeling and prediction of hourly Nox nad NO2 concentration in urban air in London. Atmos. Environ. 1999, 33, 709–719 http://dx.doi.org/10.1016/S1352-2310(98)00230-110.1016/S1352-2310(98)00230-1Search in Google Scholar

[29] Mallows C.L., Some Comments on CP”, Technometrics, 1973, 15(4), 661–675 10.1080/00401706.1973.10489103Search in Google Scholar

[30] Stevens J., Applied Multivariate Statistics for the Social Sciences. Taylor & Francis, New York, 2002 10.4324/9781410604491Search in Google Scholar

[31] Bishop C.M., Neural networks for Pattern Recognition. Cylerdon Press, Oxford, 1995 10.1201/9781420050646.ptb6Search in Google Scholar

[32] ]_Haykin S., Neural network: a Comprehensive Foundation. Prentice Hall, Upper Saddle River, NJ, 1999 Search in Google Scholar

[33] Wojciechowski M., Feed-forward neural network for python, Technical University of Lodz (Poland), Department of Civil Engineering, Architecture and Environmental Engineering, http://ffnet.sourceforge.net/, ffnet-0.7, 2011 Search in Google Scholar

[34] Riedmiller M., Braun H., A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm, in H. Ruspini, editor, Proceedings of the 1993 IEEE International Conference on Neural Networks (ICNN), San Francisco, USA, 1993, 586–591, doi: 10.1109/ICNN.1993.298623 http://dx.doi.org/10.1109/ICNN.1993.29862310.1109/ICNN.1993.298623Search in Google Scholar

[35] Lyapustin A., Wang Y., Laszlo I., Kahn R., Korkin S., Remer L., Levy R., Reid J.S., Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm. J. Geophys. Res., 2011, 116, D03211 10.1029/2010JD014986Search in Google Scholar

Published Online: 2014-5-29
Published in Print: 2014-3-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 11.5.2024 from https://www.degruyter.com/document/doi/10.2478/s13533-012-0135-6/html
Scroll to top button