Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access September 24, 2011

Recent developments in neuropathology of autism spectrum disorders

  • Dora Polšek EMAIL logo , Tomislav Jagatic , Maja Cepanec , Patrick Hof and Goran Šimić

Abstract

Autism spectrum disorders (ASD) represent complex neurodevelopmental disorders characterized by impairments in reciprocal social interactions, abnormal development and use of language, and monotonously repetitive behaviors. With an estimated heritability of more than 90%, it is the most strongly genetically influenced psychiatric disorder of the young age. In spite of the complexity of this disorder, there has recently been much progress in the research on etiology, early diagnosing, and therapy of autism. Besides already advanced neuropathologic research, several new technological innovations, such as sleep functional MRI, diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy imaging (1H-MRS) divulged promising breakthroughs in exploring subtle morphological and neurochemical changes in the autistic brain. This review provides a comprehensive summary of morphological and neurochemical alterations in autism known to date, as well as a short introduction to the functional research that has begun to advance in the last decade. Finally, we mention the progress in establishing new standardized diagnostic measures and its importance in early recognition and treatment of ASD.

[1] Bailey A., Phillips W., Rutter M., Autism: towards an integration of clinical, genetic, neuropsychological, and neurobiological perspectives. J. Child Psychol. Psychiatry, 1996, 37, 89–126 http://dx.doi.org/10.1111/j.1469-7610.1996.tb01381.x10.1111/j.1469-7610.1996.tb01381.xSearch in Google Scholar PubMed

[2] Amaral D. G., Schumann C. M., Wu Nordahl C., Neuroanatomy of autism, Trends in Neuroscience, 2008, 31, 137–145 http://dx.doi.org/10.1016/j.tins.2007.12.00510.1016/j.tins.2007.12.005Search in Google Scholar PubMed

[3] Rice C., Prevalence of Autism Spectrum Disorders — Autism and Developmental Disabilities Monitoring Network, United States, 2006, MMWR Surveill. Summ., 2009, 58, 1–20 10.1037/e562722010-001Search in Google Scholar

[4] Courchesne E., Pierce K., Schumann C. M., Redcay E., Buckwalter J. A., Kennedy D. P., Morgan J., Mapping Early Brain Development in Autism, Neuron, 2007, 56, 399–413 http://dx.doi.org/10.1016/j.neuron.2007.10.01610.1016/j.neuron.2007.10.016Search in Google Scholar PubMed

[5] American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, 4th edition, 1994 Search in Google Scholar

[6] Carper R., Courchesne E., Localized enlargement of the frontal lobe in autism, Biol. Psychiatry, 2005, 57, 126–133 http://dx.doi.org/10.1016/j.biopsych.2004.11.00510.1016/j.biopsych.2004.11.005Search in Google Scholar PubMed

[7] Palmen S. J. M. C., van Engeland H., Review on structural neuroimaging findings in autism, J. Neural Transm., 2004, 111, 903–929 http://dx.doi.org/10.1007/s00702-003-0068-910.1007/s00702-003-0068-9Search in Google Scholar PubMed

[8] Palmen S.J., van Engeland H., Hof P.R., Schmitz C., Neuropathological findings in autism, Brain, 2004, 127(Pt 12), 2572–2583 http://dx.doi.org/10.1093/brain/awh28710.1093/brain/awh287Search in Google Scholar PubMed

[9] Courchesne, E., Pierce K., Brain overgrowth in autism during a critical time in development: implications for frontal pyramidal neuron and interneuron development and connectivity, Int. J. Dev. Neurosci., 2005, 23, 153–170 http://dx.doi.org/10.1016/j.ijdevneu.2005.01.00310.1016/j.ijdevneu.2005.01.003Search in Google Scholar PubMed

[10] Courchesne E, Carper R, Akshoomoff N., Evidence of brain overgrowth in the first year of life in autism, JAMA, 2003, 290, 337–344 http://dx.doi.org/10.1001/jama.290.3.33710.1001/jama.290.3.337Search in Google Scholar PubMed

[11] Carper R. A., Moses P., Tigue Z. D., Courchesne E., Cerebral lobes in autism: early hyperplasia and abnormal age effects, Neuroimage, 2002, 16, 1038–1051 http://dx.doi.org/10.1006/nimg.2002.109910.1006/nimg.2002.1099Search in Google Scholar PubMed

[12] Herbert M. R., Ziegler D. A., Deutsch C. K., O’Brien L. M., Lange N., Bakardjiev A., et al., Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys, Brain, 2003, 126, 1182–1192 http://dx.doi.org/10.1093/brain/awg11010.1093/brain/awg110Search in Google Scholar

[13] Casanova M. F., Buxhoeveden D. P., Switala A. E., Roy E., Minicolumnar pathology in autism, Neurology, 2002, 58, 428–432 10.1212/WNL.58.3.428Search in Google Scholar

[14] Lücke J., von der Malsburg C., Rapid processing and unsupervised learning in a model of the cortical macrocolumn, Neural Comput., 2004, 16, 501–533 http://dx.doi.org/10.1162/08997660477274489310.1162/089976604772744893Search in Google Scholar

[15] Casanova M. F., van Kooten I. A. J., Switala A. E., van Engeland H., Heinsen H., Steinbusch H. W. M. et al., Minicolumnar abnormalities in autism, Acta Neuropathol., 2006, 112, 287–303 http://dx.doi.org/10.1007/s00401-006-0085-510.1007/s00401-006-0085-5Search in Google Scholar

[16] Rakic P., A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution, Trends Neurosci., 1995, 18, 383–388 http://dx.doi.org/10.1016/0166-2236(95)93934-P10.1016/0166-2236(95)93934-PSearch in Google Scholar

[17] Rakic P., Limits of neurogenesis in primates, Science, 1985, 227, 1054–1056 http://dx.doi.org/10.1126/science.397560110.1126/science.3975601Search in Google Scholar PubMed

[18] Dehaene-Lambertz G., Hertz-Pannier L., Dubois J., Nature and nurture in language acquisition: anatomical and functional brainimaging studies in infants, Trends Neurosci., 2006, 29, 367–373 http://dx.doi.org/10.1016/j.tins.2006.05.01110.1016/j.tins.2006.05.011Search in Google Scholar PubMed

[19] Redcay E., Courchesne E., Deviant functional magnetic resonance imaging patterns of brain activity to speech in 2-3-year-old children with autism spectrum disorder, Biol. Psychiatry, 2008, 64, 589–598 http://dx.doi.org/10.1016/j.biopsych.2008.05.02010.1016/j.biopsych.2008.05.020Search in Google Scholar PubMed PubMed Central

[20] Pierce K. Early functional brain development in autism and the promise of sleep fMRI, Brain Res., 2010, 1380, 162–174 http://dx.doi.org/10.1016/j.brainres.2010.09.02810.1016/j.brainres.2010.09.028Search in Google Scholar PubMed PubMed Central

[21] Dinstein I., Pierce K., Eyler L., Solso S., Malach R, Behrmann M. et al., Disrupted neural synchronization in toddlers with autism, Neuron, 2011, 70, 1218–1225 http://dx.doi.org/10.1016/j.neuron.2011.04.01810.1016/j.neuron.2011.04.018Search in Google Scholar PubMed PubMed Central

[22] Knaus T. A., Silver A. M., Kennedy M., Lindgren K. A., Dominick K. C., Siegel J. et al., Language laterality in autism spectrum disorder and typical controls: a functional, volumetric, and diffusion tensor MRI study, Brain Lang., 2010, 112, 113–120 http://dx.doi.org/10.1016/j.bandl.2009.11.00510.1016/j.bandl.2009.11.005Search in Google Scholar

[23] Kleinhans N. M, Richards T., Johnson L. C., Weaver K. E., Greenson J., Dawson G. et al., fMRI evidence of neural abnormalities in the subcortical face processing system in ASD Neuroimage, 2011, 54, 697–704 http://dx.doi.org/10.1016/j.neuroimage.2010.07.03710.1016/j.neuroimage.2010.07.037Search in Google Scholar

[24] Corbett B., Carmeana V., Ravizzae S., Wendelkenf C., Henryg M. L., Cartera C. et al., A functional and structural study of emotion and face processing in children with autism, Psychiatry Res., 2009, 173, 196–205 http://dx.doi.org/10.1016/j.pscychresns.2008.08.00510.1016/j.pscychresns.2008.08.005Search in Google Scholar

[25] Pierce K., Redcay E., Fusiform function in children with an autism spectrum disorder is a matter of “who”, Biol. Psychiatry, 2008, 64, 552–602 http://dx.doi.org/10.1016/j.biopsych.2008.05.01310.1016/j.biopsych.2008.05.013Search in Google Scholar

[26] van Kooten I. A., Palmen S. J., von Cappeln P., Steinbusch H. W., Korr H., Heinsen H., Hof P.R., van Engeland H., Schmitz C., Neurons in the fusiform gyrus are fewer and smaller in autism, Brain, 2008, 131, 987–999 http://dx.doi.org/10.1093/brain/awn03310.1093/brain/awn033Search in Google Scholar

[27] Oblak A. L., Rosene D. L., Kemper T. L., Bauman M. L., Blatt G. J., Altered posterior cingulate cortical cyctoarchitecture, but normal density of neurons and interneurons in the posterior cingulate cortex and fusiform gyrus in autism, Autism Res., 2011, 4, 200–211 http://dx.doi.org/10.1002/aur.18810.1002/aur.188Search in Google Scholar

[28] Bush G., Luu P., Posner M. I., Cognitive and emotional influences in anterior cingulate cortex, Trends Cogn. Sci., 2000, 4, 215–222 http://dx.doi.org/10.1016/S1364-6613(00)01483-210.1016/S1364-6613(00)01483-2Search in Google Scholar

[29] Kennedy D. P., Courchesne E., Functional abnormalities of the default network during self- and other-reflection in autism, Soc. Cogn. Affect. Neurosci., 2008, 3, 177–190 http://dx.doi.org/10.1093/scan/nsn01110.1093/scan/nsn011Search in Google Scholar PubMed PubMed Central

[30] Agam Y., Joseph R. M., Barton J. J., Manoach D. S., Reduced cognitive control of response inhibition by the anterior cingulate cortex in autism spectrum disorders, Neuroimage, 2010, 52, 336–347 http://dx.doi.org/10.1016/j.neuroimage.2010.04.01010.1016/j.neuroimage.2010.04.010Search in Google Scholar PubMed PubMed Central

[31] Kana R. K., Keller T. A., Minshew N. J., Just M. A., Inhibitory control in high-functioning autism: decreased activation and underconnectivity in inhibition networks, Biol. Psychiatry, 2007, 62, 198–206 http://dx.doi.org/10.1016/j.biopsych.2006.08.00410.1016/j.biopsych.2006.08.004Search in Google Scholar PubMed PubMed Central

[32] Gomot M., Bernard F. A., Davis M. H., Belmonte M. K., Ashwin C., Bullmore E. T. et al., Change detection in children with autism: an auditory event-related fMRI study, Neuroimage, 2006, 29, 475–484 http://dx.doi.org/10.1016/j.neuroimage.2005.07.02710.1016/j.neuroimage.2005.07.027Search in Google Scholar

[33] Simms M. L., Kemper T. L., Timbie C. M., Bauman M. L., Blatt G. J., The anterior cingulate cortex in autism: heterogeneity of qualitative and quantitative cytoarchitectonic features suggests possible subgroups, Acta Neuropathol., 2009, 118, 673–684 http://dx.doi.org/10.1007/s00401-009-0568-210.1007/s00401-009-0568-2Search in Google Scholar

[34] Noriuchi M., Kikuchi Y., Yoshiura T., Kira R., Shigeto H., Hara T. et al., Altered white matter fractional anisotropy and social impairment in children with autism spectrum disorder, Brain Res., 2010, 1362, 141–149 http://dx.doi.org/10.1016/j.brainres.2010.09.05110.1016/j.brainres.2010.09.051Search in Google Scholar

[35] Nimchinsky E.A., Vogt B.A., Morrison J.H., Hof P.R., Spindle neurons of the human anterior cingulate cortex, J Comp Neurol, 1995, 355(1):27–37 http://dx.doi.org/10.1002/cne.90355010610.1002/cne.903550106Search in Google Scholar

[36] Nimchinsky E.A., Gilissen E., Allman J.M., Perl D.P., Erwin J.M., Hof P.R., A neuronal morphologic type unique to humans and great apes, Proc Natl Acad Sci U S A. 1999, 96(9):5268–5273 http://dx.doi.org/10.1073/pnas.96.9.526810.1073/pnas.96.9.5268Search in Google Scholar

[37] Allman J.M., Tetreault N.A., Hakeem A.Y., Manaye K.F., Semendeferi K., Erwin J.M., Park S., Goubert V., Hof P.R., The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans., Brain Struct Funct, 2010, 214(5–6):495–517 http://dx.doi.org/10.1007/s00429-010-0254-010.1007/s00429-010-0254-0Search in Google Scholar

[38] Seeley W.W., Carlin D.A., Allman J.M., Macedo M.N., Bush C., Miller B.L., DeArmond S.J., Early frontotemporal dementia targets neurons unique to apes and humans, Ann Neurol, 2006, 60(6):660–667 http://dx.doi.org/10.1002/ana.2105510.1002/ana.21055Search in Google Scholar

[39] Kim E.J., Sidhu M., Gaus S.E., Huang E.J., Hof P.R., Miller B.L., Dearmond S.J., Seeley W.W., Selective frontoinsular von Economo neuron and fork cell loss in early behavioral variant frontotemporal dementia, Cereb Cortex, 2011- in press 10.1093/cercor/bhr004Search in Google Scholar

[40] Paul L.K., Schieffer B., Brown W. S., Social processing deficits in agenesis of the corpus callosum: narratives from the Thematic Appreciation Test, Arch. Clin. Neuropsychol., 2004, 19, 215–225 http://dx.doi.org/10.1016/S0887-6177(03)00024-610.1016/S0887-6177(03)00024-6Search in Google Scholar

[41] Brüne M., Schobel A., Karau R., Benali A., Faustmann P. M., Juckel G. et al., von Economo neuron density in the anterior cingulate cortex is reduced in early onset schizophrenia, Acta Neuropathol., 2010, 119, 771–778 http://dx.doi.org/10.1007/s00401-010-0673-210.1007/s00401-010-0673-2Search in Google Scholar PubMed

[42] Santos M., Uppal N., Butti C., Wicinski B., Schmeidler J., Giannakopoulos P. et al., von Economo neurons in autism: a stereologic study of the frontoinsular cortex in children, Brain Res., 2011, 1380, 206–217 http://dx.doi.org/10.1016/j.brainres.2010.08.06710.1016/j.brainres.2010.08.067Search in Google Scholar

[43] Lombardo M. V., Baron-Cohen S., Unraveling the paradox of the autistic self, Wiley Interdiscipl. Rev. Cogn. Sci., 2010, 1, 393–403 10.1002/wcs.45Search in Google Scholar

[44] Adolphs R., The neurobiology of social recognition, Curr. Opin. Neurobiol., 2001, 11, 231–239 http://dx.doi.org/10.1016/S0959-4388(00)00202-610.1016/S0959-4388(00)00202-6Search in Google Scholar

[45] Sparks B. F., Friedman S. D., Shaw D. W., Aylward E. H., Echelard D., Artru A.A. et al., Brain structural abnormalities in young children with autism spectrum disorder, Neurology, 2002, 59, 184–192 10.1212/WNL.59.2.184Search in Google Scholar

[46] Schumann C. M., Nordahl C. W., Bridging the gap between MRI and postmortem research in autism, Brain Res., 2011, 1380, 175–186 http://dx.doi.org/10.1016/j.brainres.2010.09.06110.1016/j.brainres.2010.09.061Search in Google Scholar PubMed PubMed Central

[47] Schumann C. M., Hamstra J., Goodlin-Jones B. L., Lotspeich L. J., Kwon H., Buonocore M. H. et al., The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages, J. Neurosci., 2004, 24, 6392–6401 http://dx.doi.org/10.1523/JNEUROSCI.1297-04.200410.1523/JNEUROSCI.1297-04.2004Search in Google Scholar PubMed PubMed Central

[48] Juranek J., Filipek P. A., Berenji G. R., Modahl C., Osann K., Spence M.A., Association between amygdala volume and anxiety level: magnetic resonance imaging (MRI) study in autistic children, J. Child Neurol., 2006, 21, 1051–1058 http://dx.doi.org/10.1177/7010.2006.0023710.1177/7010.2006.00237Search in Google Scholar PubMed

[49] Munson J., Dawson G., Abbott R., Faja S., Webb S. J., Friedman S. D. et al., Amygdalar volume and behavioral development in autism, Arch. Gen. Psychiatry, 2006, 63, 686–669 http://dx.doi.org/10.1001/archpsyc.63.6.68610.1001/archpsyc.63.6.686Search in Google Scholar PubMed

[50] Amaral D. G., Schumann C. M., Nordahl C. W., Neuroanatomy of autism, Trends Neurosci., 2008, 31, 137–145 http://dx.doi.org/10.1016/j.tins.2007.12.00510.1016/j.tins.2007.12.005Search in Google Scholar PubMed

[51] Schumann C. M., Amaral D. G., Stereological analysis of amygdala neuron number in autism, J. Neurosci., 2006, 26, 7674–7679 http://dx.doi.org/10.1523/JNEUROSCI.1285-06.200610.1523/JNEUROSCI.1285-06.2006Search in Google Scholar PubMed PubMed Central

[52] Kemper T. L., Bauman M. L., The contribution of neuropathologic studies to the understanding of autism, Neurol. Clin., 1993, 11, 175–187 10.1016/S0733-8619(18)30176-2Search in Google Scholar

[53] Schmahmann J. D., An emerging concept. The cerebellar contribution to higher function. Arch. Neurol., 1991, 48, 1178–1187 10.1001/archneur.1991.00530230086029Search in Google Scholar

[54] Courchesne E., Saitoh O., Townsend J. P., Yeung-Courchesne R., Press G. A., Lincoln A. J. et al., Cerebellar hypoplasia and hyperplasia in infantile autism, Lancet, 1994, 343, 63–64 http://dx.doi.org/10.1016/S0140-6736(94)90923-710.1016/S0140-6736(94)90923-7Search in Google Scholar

[55] Stanfield A. C., McIntosh A. M., Spencer M. D., Philip R., Gaur S., Lawrie S. M., Towards a neuroanatomy of autism: a systematic review and meta-analysis of structural magnetic resonance imaging studies, Eur. Psychiatry, 2008, 23, 289–299 http://dx.doi.org/10.1016/j.eurpsy.2007.05.00610.1016/j.eurpsy.2007.05.006Search in Google Scholar PubMed

[56] Piven J., Saliba K., Bailey J., Arndt S., An MRI study of autism: the cerebellum revisited, Neurology, 1997, 49, 546–551 10.1212/WNL.49.2.546Search in Google Scholar PubMed

[57] Scott J. A., Schumann C. M., Goodlin-Jones B. L., Amaral D. G., A comprehensive volumetric analysis of the cerebellum in children and adolescents with autism spectrum disorder, Autism Res., 2009, 2, 246–257 http://dx.doi.org/10.1002/aur.9710.1002/aur.97Search in Google Scholar PubMed PubMed Central

[58] Hazlett H. C., Poe M. D., Gerig G., Gimpel Smith R., Piven J., Cortical gray and white brain tissue volume in adolescents and adults with autism., Biol. Psychiatry, 2006, 59, 1–6 http://dx.doi.org/10.1016/j.biopsych.2005.06.01510.1016/j.biopsych.2005.06.015Search in Google Scholar PubMed

[59] Barea-Goraly N., Kwon H., Menon V., Eliez S., Lotspeich L., Reis A.L., White matter structure in autism: preliminary evidence from diffusion tensor imaging, Biol. Psychiatry, 2004, 55, 323–326 http://dx.doi.org/10.1016/j.biopsych.2003.10.02210.1016/j.biopsych.2003.10.022Search in Google Scholar PubMed

[60] Bashat D. B., Kronfeld-Duenias V., Zachor D. A., Ekstein P. M., Hendler T., Tarrasch R. et al., Accelerated maturation of white matter in young children with autism: A high b value DWI study, Neuroimage, 2007, 37, 40–47 http://dx.doi.org/10.1016/j.neuroimage.2007.04.06010.1016/j.neuroimage.2007.04.060Search in Google Scholar PubMed

[61] Shukla D. K., Keehn B., Müller R. A., Tract-specific analyses of diffusion tensor imaging show widespread white matter compromise in autism spectrum disorder, J. Child Psychol. Psychiatry, 2011, 52, 286–295 http://dx.doi.org/10.1111/j.1469-7610.2010.02342.x10.1111/j.1469-7610.2010.02342.xSearch in Google Scholar PubMed PubMed Central

[62] Spence S. J., Schneider M. T., The role of epilepsy and epileptiform EEGs in autism spectrum disorders, Pediatr. Res., 2009, 65, 599–606 http://dx.doi.org/10.1203/PDR.0b013e31819e716810.1203/PDR.0b013e31819e7168Search in Google Scholar PubMed PubMed Central

[63] Chez M. G., Chang M., Krasne V., Coughlan C., Kominsky M., Schwartz A., Frequency of epileptiform EEG abnormalities in a sequential screening of autistic patients with no known clinical epilepsy from 1996 to 2005, Epilepsy Behav., 2006, 8, 267–271 http://dx.doi.org/10.1016/j.yebeh.2005.11.00110.1016/j.yebeh.2005.11.001Search in Google Scholar PubMed

[64] Aldred S., Moore K. M., Fitzgerald M., Waring R. H., Plasma amino acid levels in children with autism and their families, J. Autism Dev. Disord., 2003, 33, 93–97 http://dx.doi.org/10.1023/A:102223870660410.1023/A:1022238706604Search in Google Scholar

[65] Moreno-Fuenmayor H., Borjas L., Arrieta A., Valera V., Socorro-Candanoza L., Plasma excitatory amino acids in autism, Invest. Clin., 1996, 37, 113–128 Search in Google Scholar

[66] Shinohe A., Hashimoto K., Nakamura K., Tsujii M., Iwata Y., Tsuchiya K.J. et al., Increased serum levels of glutamate in adult patients with autism, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2006, 30, 1472–1477 http://dx.doi.org/10.1016/j.pnpbp.2006.06.01310.1016/j.pnpbp.2006.06.013Search in Google Scholar PubMed

[67] Purcell A. E., Jeon O. H., Zimmerman A. W., Blue M. E., Pevsner J., Postmortem brain abnormalities of the glutamate neurotransmitter system in autism, Neurology, 2001, 57, 1618–1628 10.1212/WNL.57.9.1618Search in Google Scholar

[68] McDougle C. J., Erickson C. A., Stigler K. A., Posey D. J., Neurochemistry in the pathophysiology of autism, J. Clin. Psychiatry, 2005, Suppl 10, 9–18 Search in Google Scholar

[69] McCauley J. L., Olson L. M., Delahanty R., Amin T., Nurmi E. L., Organ E. L. et al., A linkage disequilibrium map of the 1-Mb 15q12 GABA(A) receptor subunit cluster and association to autism, Am. J. Med. Genet., 2004, 131B, 51–59 http://dx.doi.org/10.1002/ajmg.b.3003810.1002/ajmg.b.30038Search in Google Scholar PubMed

[70] Hogart A., Wu D., LaSalle J. M., Schanen N. C., The comorbidity of autism with the genomic disorders of chromosome 15q11.2-q13, Neurobiol. Dis., 2010, 38, 181–191 http://dx.doi.org/10.1016/j.nbd.2008.08.01110.1016/j.nbd.2008.08.011Search in Google Scholar PubMed PubMed Central

[71] Nurmi E. L., Amin T., Olson L. M., Jacobs M. M., McCauley J. L., Lam A. Y. et al., Dense linkage disequilibrium mapping in the 15q11-q13 maternal expression domain yields evidence for association in autism, Mol. Psychiatry, 2003, 8, 624–634 http://dx.doi.org/10.1038/sj.mp.400128310.1038/sj.mp.4001283Search in Google Scholar PubMed

[72] Fatemi S. H., Reutiman T. J., Folsom T. D., Thuras P. D., GABA(A) receptor downregulation in brains of subjects with autism, J. Autism Dev. Disord., 2009, 39, 223–230 http://dx.doi.org/10.1007/s10803-008-0646-710.1007/s10803-008-0646-7Search in Google Scholar PubMed PubMed Central

[73] Oblak A. L., Gibbs T. T., Blatt G. J., Decreased GABA(B) receptors in the cingulate cortex and fusiform gyrus in autism, J. Neurochem., 2010, 114, 1414–1423 10.1111/j.1471-4159.2010.06858.xSearch in Google Scholar PubMed PubMed Central

[74] Fatemi S. H, Halt A. R, Stary J. M, Kanodia R, Schulz S. C, Realmuto G. R., Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol. Psychiatry, 2002, 52, 805–810 http://dx.doi.org/10.1016/S0006-3223(02)01430-010.1016/S0006-3223(02)01430-0Search in Google Scholar

[75] Bernardi S., Anagnostou E., Shen J., Kolevzon A, Buxbaum J. D., Hollander E. et al., In vivo 1H-magnetic resonance spectroscopy study of the attentional networks in autism, Brain Res., 2011, 1380, 198–205 http://dx.doi.org/10.1016/j.brainres.2010.12.05710.1016/j.brainres.2010.12.057Search in Google Scholar PubMed PubMed Central

[76] Ey E., Leblond C. S., Bourgeron T., Behavioral profiles of mouse models for autism spectrum disorders, Autism Res., 2011, 4, 5–16 http://dx.doi.org/10.1002/aur.17510.1002/aur.175Search in Google Scholar PubMed

[77] Bangash M. A., Park J. M., Melnikova T., Wang D., Jeon S. K., Lee D. et al., Enhanced polyubiquitination of Shank3 and NMDA receptor in a mouse model of autism, Cell, 2011, 145, 758–772 http://dx.doi.org/10.1016/j.cell.2011.03.05210.1016/j.cell.2011.03.052Search in Google Scholar PubMed PubMed Central

[78] Peça J., Feliciano C., Ting J. T., Wang W., Wells M. F., Venkatraman T. N. et al., Shank3 mutant mice display autistic-like behaviours and striatal dysfunction, Nature, 2011, 472, 437–442 http://dx.doi.org/10.1038/nature0996510.1038/nature09965Search in Google Scholar PubMed PubMed Central

[79] Bozdagi O., Sakurai T., Papapetrou D., Wang X., Dickstein D. L., Takahashi N., et al., Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication, Mol. Autism, 2010, 1:15 http://dx.doi.org/10.1186/2040-2392-1-1510.1186/2040-2392-1-15Search in Google Scholar PubMed PubMed Central

[80] Ellegood J., Lerch J. P., Henkelman R. M., Brain abnormalities in a Neuroligin3 R451C knockin mouse model associated with autism, Autism Res., 2011, doi: 10.1002/aur.215 10.1002/aur.215Search in Google Scholar PubMed

[81] Gutierrez R. C., Hung J., Zhang Y., Kertesz A. C., Espina F. J., Colicos M. A., Altered synchrony and connectivity in neuronal networks expressing an autism-related mutation of neuroligin 3, Neuroscience, 2009, 162, 208–221 http://dx.doi.org/10.1016/j.neuroscience.2009.04.06210.1016/j.neuroscience.2009.04.062Search in Google Scholar PubMed

[82] Etherton M. R., Tabuchi K., Sharma M., Ko J., Südhof T. C., An autismassociated point mutation in the neuroligin cytoplasmic tail selectively impairs AMPA receptor-mediated synaptic transmission in hippocampus, EMBO J., 2011, 30, 2908–2919 http://dx.doi.org/10.1038/emboj.2011.18210.1038/emboj.2011.182Search in Google Scholar PubMed PubMed Central

[83] Testa-Silva G., Loebel A., Giugliano M., de Kock C.P., Mansvelder H.D., Meredith R.M., Hyperconnectivity and slow synapses during early development of medial prefrontal cortex in a mouse model for mental retardation and autism, Cereb. Cortex, 2011, Aug 19 [Epub ahead of print]_doi: 10.1093/cercor/bhr224 10.1093/cercor/bhr224Search in Google Scholar PubMed PubMed Central

[84] Hagerman R., Au J., Hagerman P., FMR1 premutation and full mutation molecular mechanisms related to autism, J. Neurodev. Dis., 2011, 3, 211–224 http://dx.doi.org/10.1007/s11689-011-9084-510.1007/s11689-011-9084-5Search in Google Scholar

[85] DeLorey T. M., Sahbaie P., Hashemi E., Li W. W., Salehi A., Clark D. J., Somatosensory and sensorimotor consequences associated with the heterozygous disruption of the autism candidate gene, Gabrb3, Behav. Brain Res., 2011, 216, 36–45 http://dx.doi.org/10.1016/j.bbr.2010.06.03210.1016/j.bbr.2010.06.032Search in Google Scholar

[86] Fatemi S. H., Co-occurrence of neurodevelopmental genes in etiopathogenesis of autism and schizophrenia, Schizophr Res, 2010, 118, 303–304 http://dx.doi.org/10.1016/j.schres.2010.01.01810.1016/j.schres.2010.01.018Search in Google Scholar

[87] Holt R., Barnby G., Maestrini E., Bacchelli E., Brocklebank D., Sousa I. et al., Linkage and candidate gene studies of autism spectrum disorders in European populations, EU Autism MOLGEN Consortium, Eur. J. Hum. Genet., 2010, 18, 1013–1019 http://dx.doi.org/10.1038/ejhg.2010.6910.1038/ejhg.2010.69Search in Google Scholar

[88] McBride K. L., Varga E. A., Pastore M. T., Prior T. W., Manickam K., Atkin J. F. et al., Confirmation study of PTEN mutations among individuals with autism or developmental delays/mental retardation and macrocephaly, Autism Res., 2010, 3, 137–141 http://dx.doi.org/10.1002/aur.13210.1002/aur.132Search in Google Scholar

[89] Leboyer M., Philippe A., Bouvard M., Guilloud-Bataille M., Bondoux D., Tabuteau F. et al. Whole blood serotonin and plasma beta-endorphin in autistic probands and their first-degree relatives, Biol. Psychiatry, 1999, 45, 158–163 http://dx.doi.org/10.1016/S0006-3223(97)00532-510.1016/S0006-3223(97)00532-5Search in Google Scholar

[90] Cook E. H. Jr., Leventhal B. L., Freedman D. X., Free serotonin in plasma: autistic children and their first-degree relatives, Biol. Psychiatry, 1988, 24, 488–491 http://dx.doi.org/10.1016/0006-3223(88)90192-810.1016/0006-3223(88)90192-8Search in Google Scholar

[91] Hranilovic D., Bujas-Petkovic Z., Vragovic R., Vuk T., Hock K., Jernej B., Hyperserotonemia in adults with autistic disorder, J. Autism Dev. Disord., 2007, 37, 1934–1940 http://dx.doi.org/10.1007/s10803-006-0324-610.1007/s10803-006-0324-6Search in Google Scholar PubMed

[92] Kolevzon A., Newcorn J. H., Kryzak L., Chaplin W., Watner D., Hollander E. et al., Relationship between whole blood serotonin and repetitive behaviors in autism, Psychiatry Res., 2010, 175, 274–276 http://dx.doi.org/10.1016/j.psychres.2009.02.00810.1016/j.psychres.2009.02.008Search in Google Scholar PubMed PubMed Central

[93] Brunton P.J., Russell J.A., The expectant brain: adapting for motherhood. Nat Rev Neurosci, 2008, 9(1), 11–25 http://dx.doi.org/10.1038/nrn228010.1038/nrn2280Search in Google Scholar PubMed

[94] Neumann I.D., Brain oxytocin: a key regulator of emotional and social behaviours in both females and males, J Neuroendocrinol, 2008, 20(6):858–65 http://dx.doi.org/10.1111/j.1365-2826.2008.01726.x10.1111/j.1365-2826.2008.01726.xSearch in Google Scholar

[95] Meyer-Lindenberg A., Domes G., Kirsch P., Heinrichs M., Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine., Nat Rev Neurosci, 2011, 12(9), 524–538 doi: 10.1038/nrn3044 http://dx.doi.org/10.1038/nrn304410.1038/nrn3044Search in Google Scholar

[96] Insel T. R., O’Brien D. J., Leckman J. F., Oxytocin, vasopressin, and autism: is there a connection?, Biol. Psychiatry, 1999, 45, 145–157 http://dx.doi.org/10.1016/S0006-3223(98)00142-510.1016/S0006-3223(98)00142-5Search in Google Scholar

[97] Ferguson J. N, Young L. J, Hearn E. F, Matzuk M. M, Insel T. R, Winslow J. T., Social amnesia in mice lacking the oxytocin gene, Nat. Genet., 2000, 25, 284–288 http://dx.doi.org/10.1038/7704010.1038/77040Search in Google Scholar PubMed

[98] Šešo-Šimić Đ., Sedmak G., Hof P.R., Šimić G., Recent advances in the neurobiology of attachment behavior, Transl. Neurosci., 2010, 2, 148–159 10.2478/v10134-010-0020-0Search in Google Scholar

[99] Gale S., Ozonoff S., Lainhart J., Brief report: pitocin induction in autistic and nonautistic individuals, J. Autism Dev. Disord., 2003, 33, 205–208 http://dx.doi.org/10.1023/A:102295182947710.1023/A:1022951829477Search in Google Scholar

[100] Insel T. R., A neurobiological basis of social attachment, Am. J. Psychiatry, 1997, 154, 726–735 10.1176/ajp.154.6.726Search in Google Scholar PubMed

[101] Lotspeich L. J., Kwon H., Schumann C. M., Fryer S. L., Goodlin-Jones B. L., Buonocore M. H. et al., Investigation of neuroanatomical differences between autism and Asperger syndrome, Arch. Gen. Psychiatry, 2004, 61, 291–298 http://dx.doi.org/10.1001/archpsyc.61.3.29110.1001/archpsyc.61.3.291Search in Google Scholar PubMed

[102] Luyster R., Gotham K., Guthrie W., Coffing M., Petrak R., Pierce K. et al., The autism diagnostic observation schedule-toddler module: a new module of a standardized diagnostic measure for autism spectrum disorders, J. Autism Dev. Disord., 2009, 39, 1305–1320 http://dx.doi.org/10.1007/s10803-009-0746-z10.1007/s10803-009-0746-zSearch in Google Scholar PubMed PubMed Central

[103] Pierce K., Carter C., Weinfeld M., Desmond J., Hazin R., Bjork R. et al., Detecting, studying, and treating autism early: the one-year wellbaby check-up approach, J. Pediatr., 2011, 159, 458–465 http://dx.doi.org/10.1016/j.jpeds.2011.02.03610.1016/j.jpeds.2011.02.036Search in Google Scholar PubMed PubMed Central

[104] Uppal N., Papapetrou D., Santos M., Bozdagi O, Buxbaum J. D., Hof P. R., Autism spectrum disorders: neuropathology and animal models, Envir. Health Perspect., submitted Search in Google Scholar

Published Online: 2011-9-24
Published in Print: 2011-9-1

© 2011 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.2478/s13380-011-0024-3/html
Scroll to top button