Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter March 15, 2013

Towards optoelectronic detection of explosives

  • J. Wojtas EMAIL logo , T. Stacewicz , Z. Bielecki , B. Rutecka , R. Medrzycki and J. Mikolajczyk
From the journal Opto-Electronics Review

Abstract

Detection of explosives is an important challenge for contemporary science and technology of security systems. We present an application of NOx sensors equipped with concentrator in searching of explosives. The sensors using CRDS with blue — violet diode lasers (410 nm) as well as with QCL lasers (5.26 μm and 4.53 μm) are described. The detection method is based either on reaction of the sensors to the nitrogen oxides emitted by explosives or to NOx produced during thermal decomposition of explosive vapours. For TNT, PETN, RDX, and HMX the detection limit better than 1 ng has been achieved.

[1] E.M.A. Hussein and E.J. Walker, “Review of one-side approaches to radiographic imaging for the detection of explosives and narcotics”, Radiat. Meas. 29, 581–591 (1998). http://dx.doi.org/10.1016/S1350-4487(98)00075-410.1016/S1350-4487(98)00075-4Search in Google Scholar

[2] J. Reno, R.C. Fisher, L. Robinson, N. Brennan, and J. Travis, Guide for the selection of commercial explosives detection systems for low enforcement application, U.S. National Institute of Justice, Washington, 1999. Search in Google Scholar

[3] G. Harding, “X-ray scatter tomography for explosives detection”, Radiat. Phys. Chem. 71, 869–881 (2004). http://dx.doi.org/10.1016/j.radphyschem.2004.04.11110.1016/j.radphyschem.2004.04.111Search in Google Scholar

[4] H. Vogel, “Search by X-rays applied technology”, Eur. J. Radiol. 63, 227–236 (2007). http://dx.doi.org/10.1016/j.ejrad.2007.03.03910.1016/j.ejrad.2007.03.039Search in Google Scholar

[5] Y. Liu, B.D. Sowerby, and J.R. Tickner, “Comparison of neutron and high-energy X-raydual-beam radiography for air cargo inspection”, Appl. Radiat. Isotopes 66, 463–473 (2008). http://dx.doi.org/10.1016/j.apradiso.2007.10.00510.1016/j.apradiso.2007.10.005Search in Google Scholar

[6] A. Dicken, K. Rogers, P. Evans, J. Rogers, and J.W. Chan, “The separation of X-ray diffraction patterns for threat detection”, Appl. Radiat. Isotopes 68, 439–443 (2010). http://dx.doi.org/10.1016/j.apradiso.2009.11.07210.1016/j.apradiso.2009.11.072Search in Google Scholar

[7] L. Eger, S. Do, P. Ishwar, W.C. Karl, and H. Pien, “A learning-based approach to explosives detection using multi-energy X-ray computed tomography”, Int. Conf. Acoust. Spee., pp. 2004–2007, Prague, 2011. Search in Google Scholar

[8] A.A. Faust, R.E. Rothschild, P. Leblanc, J.E. McFee, “Development of a coded aperture X-ray backscatter imager for explosive device detection”, IEEE T. Nucl. Sci. 56, 299–307 (2009). http://dx.doi.org/10.1109/TNS.2008.200953710.1109/TNS.2008.2009537Search in Google Scholar

[9] W. Susek, “Thermal microwave radiation for subsurface absolute temperature measurement”, Acta Phys. Pol. A118, 1246–1249 (2010). 10.12693/APhysPolA.118.1246Search in Google Scholar

[10] S. Seguin, Detection of low cost radio frequency receivers based on their unintended electromagnetic emissions and an active stimulation. Ph.D. dissertation, Missouri S&T, 2009. Search in Google Scholar

[11] M.C. Kemp, “Explosives detection by terahertz spectroscopy — a bridge too far?”, IEEE T. Terahertz Science and Technology 1, 282–292 (2011). http://dx.doi.org/10.1109/TTHZ.2011.215964710.1109/TTHZ.2011.2159647Search in Google Scholar

[12] L. Yun-Shik, Principles of Terahertz Science and Technology, Springer, Berlin, 2008. Search in Google Scholar

[13] D. Dragoman and M. Dragoman, “Terahertz fields and applications”, Prog. Quantum Electron. 28, 1–66 (2004). http://dx.doi.org/10.1016/S0079-6727(03)00058-210.1016/S0079-6727(03)00058-2Search in Google Scholar

[14] N. Palka, “THz reflection spectroscopy of explosives measured by Time Domain Spectroscopy” Acta Phys. Pol. A120, 713–715 (2011). 10.12693/APhysPolA.120.713Search in Google Scholar

[15] D.J. Daniels, “Ground penetrating radar for buried landmine and IED detection, unexploded ordnance detection and mitigation” NATO Science Peace S. (2009). Search in Google Scholar

[16] P. Kaczmarek, J. Karczewski, M. Łapiński, W. Miluski, M. Pasternak, and D. Silko, “Stepped frequency continuous wave radar unit for unexploded ordnance and improvised explosive device detection”, Proc. Int. Radar Symp., pp. 105–109, Leipzig, 2011. Search in Google Scholar

[17] Z. Bielecki, J. Janucki, A. Kawalec, J. Mikołajczyk, N. Palka, M. Pasternak, T. Pustelny, T. Stacewicz, and J. Wojtas, “Sensors and systems for the detection of explosive devices” Metrol. Meas. Syst. 19, 3–28 (2012). Search in Google Scholar

[18] E.L. Reber, C. Larry, and G. Blackwood, “Explosives detection system: development and enhancements” Sens. Imaging 8, 121–130 (2007). http://dx.doi.org/10.1007/s11220-007-0038-710.1007/s11220-007-0038-7Search in Google Scholar

[19] R.C. Runkle and T.A. White, “Photon and neutron interrogation techniques for chemical explosives detection in air cargo”, Nucl. Instrum. Meth. A603, 510–528 (2009). 10.1016/j.nima.2009.02.015Search in Google Scholar

[20] F.D. Brooks, M. Drosg, F.D. Smit, and C. Wikner, “Detection of explosive remnants of war by neutron thermalisation”, Appl. Radiat. Isotopes 70, 119–127 (2011). http://dx.doi.org/10.1016/j.apradiso.2011.07.00610.1016/j.apradiso.2011.07.006Search in Google Scholar PubMed

[21] S.K. Sharma, S. Jakhar, R. Shukla, A. Shyama, and C.V.S. Raob, “Explosive detection system using pulsed 14MeV neutron source”, Fusion Eng. Des. 85, 1562–1564 (2010). http://dx.doi.org/10.1016/j.fusengdes.2010.04.04410.1016/j.fusengdes.2010.04.044Search in Google Scholar

[22] N. Fischer, T.M. Klapötke, J. Stierstorfer, and C. Wiedemann,, “1-Nitratoethyl-5-nitriminotetrazole derivatives — Shaping future high explosives”, Polyhedron 30, 2374–2386 (2011). http://dx.doi.org/10.1016/j.poly.2011.05.04210.1016/j.poly.2011.05.042Search in Google Scholar

[23] E. Gudmundson, A. Jakobsson, and P. Stoica, “Based explosives detection-an overview” IEEE T. Signal Proces. 56, 887–894 (2009). Search in Google Scholar

[24] X. Zhang, S. Balkir, M.W. Hoffman, and N. Schemm, “A robust CMOS receiver front-end for nuclear quadrupole resonance based explosives detection” IEEE Int. Symp. Circ. S53, 1093–1096 (2010). 10.1109/MWSCAS.2010.5548842Search in Google Scholar

[25] X. Wang, P. Liu, K.A. Fox, J. Tang, J.A. Colón Santana, K. Belashchenko, P.A. Dowben, and Y. Sui, “The effects of Gd doping and oxygen vacancies on the properties of EuO films prepared via pulsed laser deposition”, IEEE Trans. Magn. 46, 1879–1882 (2010). http://dx.doi.org/10.1109/TMAG.2010.204631410.1109/TMAG.2010.2046314Search in Google Scholar

[26] J.A.S. Smith, M. Blanz, T.J. Rayner, M.D. Rowe, S. Bedford, and K. Althoefer, “14N quadrupole resonance and 1h t1 dispersion in the explosive rdx”, J. Magn. Reson. 213, 191–196 (2011). http://dx.doi.org/10.1016/j.jmr.2011.09.01110.1016/j.jmr.2011.09.011Search in Google Scholar PubMed

[27] A. Gregorovic and T. Apih, “TNT detection with 14N NQR: Multipulse sequences and matched filter”, J. Magn. Reson. 198, 215–221 (2009). http://dx.doi.org/10.1016/j.jmr.2009.02.01110.1016/j.jmr.2009.02.011Search in Google Scholar PubMed

[28] T.M. Osa, L.M. Cerionia, J. Forguez, J.M. Olle, and D.J. Pusiola, “NQR: From imaging to explosives and drugs detection”, Physica B389, 45–50 (2007). Search in Google Scholar

[29] M. Ostafin and B. Nogaj, “14N-NQR based device for detection of explosives in landmines”, Measurement 40, 43–54 (2007). http://dx.doi.org/10.1016/j.measurement.2006.04.00310.1016/j.measurement.2006.04.003Search in Google Scholar

[30] S.E. Stitzel, L.J. Cowen, K.J. Albert, and D.R. Walt, “Array-to-array transfer of an artificial nose classifier”, Anal. Chem. 73, 5266–5271 (2001). http://dx.doi.org/10.1021/ac010111w10.1021/ac010111wSearch in Google Scholar

[31] M.E. Koscho, R.H. Grubbs, and N.S. Lewis, “Properties of vapour detector arrays formed through plasticization of carbon black-organic polymer composites”, Anal. Chem. 74, 1307–1315 (2002). http://dx.doi.org/10.1021/ac011054+10.1021/ac011054+Search in Google Scholar

[32] H. Wohltejen and A.W. Snow, “Colloidal metal-insulator-metal ensemble chemiresistor sensor”, Anal. Chem. 70, 2856–2859 (1998). http://dx.doi.org/10.1021/ac971346410.1021/ac9713464Search in Google Scholar

[33] T.C. Pearce, S.S. Schiffman, H.T. Nagle, and J.W. Gardner, Handbook of Machine Olfaction, edited by Wiley-VCH, Weinheim, 2003. 10.1002/3527601597Search in Google Scholar

[34] W. Jakubik, M. Urbanczyk, E. Maciak, and T. Pustelny, “Bilayer structures of NiOx and Pd in surface acoustic wave an electrical gas sensor systems”, B. Pol. Acad. Sci.-Te. 56, 133–138 (2008). Search in Google Scholar

[35] A. Murugarajan and G.L. Samuel, “Measurement, modelling and evaluation of surface parameter using capacitive-sensor — based measurement system” Metrol. Meas. Syst. 18, 403–418 (2011). Search in Google Scholar

[36] http://science.nasa.gov/science-news/science-at-nasa/2004/06oct_enose Search in Google Scholar

[37] http://www.prenhall.com/settle/chapters/ch31.pdf Search in Google Scholar

[38] O.L. Collin, C. Niegel, K.E. DeRhodes, B. McCord, and G.P. Jackson, “Fast gas chromatography of explosive compounds using a pulsed-discharge electron capture detector”, J. Forensic Sci. 51, 815–818 (2006). http://dx.doi.org/10.1111/j.1556-4029.2006.00171.x10.1111/j.1556-4029.2006.00171.xSearch in Google Scholar

[39] G. Eiceman and Z. Karpas, Ion Mobility Spectrometry. CRC Press, Boca Raton, USA, 2005. http://dx.doi.org/10.1201/978142003897210.1201/9781420038972Search in Google Scholar

[40] L. Ebdon, E.H. Evans, A. Fisher, and S.J. Hill, An Introduction to Analytical Atomic Spectrometry, edited by John Wiley & Sons Ltd, Chichester, 1998. Search in Google Scholar

[41] http://sniffexquestions.blogspot.com/2007/09/what-about-ade-100-ade-101-ade650-ade.html Search in Google Scholar

[42] http://www.scribd.com/doc/56952947/38/The-Electron-Capture-Detector Search in Google Scholar

[43] R. Wilson, C. Clavering, and A. Hutchinson, “Paramagnetic bead based enzyme electrochemiluminescence immunoassay for TNT”, J. Electroanal. Chem. 557, 109–119 (2003). http://dx.doi.org/10.1016/S0022-0728(03)00353-X10.1016/S0022-0728(03)00353-XSearch in Google Scholar

[44] T. Jezierski, A. Górecka-Bruzda, M. Walczak, A.H. Świergiel, M.H. Chruszczewski, and B.L. Pearson, “Operant conditioning of dogs (Canis familiaris) for identification of humans using scent lineup”, Animal Science Papers and Reports 28, 81–93 (2010) Search in Google Scholar

[45] K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyżewski, T. Stacewicz, and L. Wöste, “Towards supercontinuum cavity ringdown spectroscopy”, Appl. Phys. B94, 396–373 (2009). 10.1007/s00340-008-3320-zSearch in Google Scholar

[46] K. Stelmaszczyk, P. Rohwetter, M. Fechner, M. Queißer, A. Czyżewski, T. Stacewicz, and L. Wöste, “Cavity ring-down absorption spectrography based on filament-generated supercontinuum light”, Opt. Express 17, 3673–3678 (2009). http://dx.doi.org/10.1364/OE.17.00367310.1364/OE.17.003673Search in Google Scholar PubMed

[47] N.A. Hatab, G. Eres, P.B. Hatzingerc, and B. Gua, “Detection and analysis of cyclotrimethylenetrinitramine (RDX) in environmental samples by surface-enhanced Raman spectroscopy”, J. Raman Spectrosc. 41, 1131–1136 (2010). http://dx.doi.org/10.1002/jrs.257410.1002/jrs.2574Search in Google Scholar

[48] J. Smulko, M. Gnyba, and A. Kwiatkowski, “Detection of illicit chemicals by portable Raman spectrometer”, Bull. Pol. Ac.: Tech. 59, 449–452, 2011. 10.2478/v10175-011-0057-3Search in Google Scholar

[49] http://www.sciencedaily.com/releases/2011/05/110509161759.htm (2011). Search in Google Scholar

[50] D.A. Cremers and L.J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, edited by John Wiley & Sons, online, 2006. http://dx.doi.org/10.1002/047009301310.1002/0470093013Search in Google Scholar

[51] J.L. Gottfried, Jr F. C. De Lucia, C.A. Munson, and A.W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects”, Anal. Bioanal. Chem. 395, 283–300 (2009). http://dx.doi.org/10.1007/s00216-009-2802-010.1007/s00216-009-2802-0Search in Google Scholar PubMed

[52] V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, “Analysis of explosive and other residues by laser induced breakdown spectroscopy”, Spectrochim. Acta B64, 1028–1039 (2009). 10.1016/j.sab.2009.07.035Search in Google Scholar

[53] P. Lucena, A. Dona, L.M. Tobaria, and J.J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy”, Spectrochim. Acta B66, 12–20 (2011). 10.1016/j.sab.2010.11.012Search in Google Scholar

[54] K. Stelmaszczyk, A. Czyżewski, A. Szymański, A. Pietruczuk, S. Chudzyński, K. Ernst, and T. Stacewicz, “New method of elaboration of the LIDAR signal”, Appl. Phys. B70, 295–301 (2000). http://dx.doi.org/10.1007/s00340005004810.1007/s003400050048Search in Google Scholar

[55] http://www.as.northropgrumman.com/products/almds/assets/ALMDS_Fact_Sheet.pdf (2008). Search in Google Scholar

[56] B.M. Onat, G. Itzler, and M. Carver, “A solid-state hyperspectral imager for real time standoff explosives detection using shortwave infrared imaging”, Proc. SPIE 7310, 731004-1 (2009). Search in Google Scholar

[57] S. Wallin, A. Pettersson, H. Östmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review”, Anal. Bioanal. Chem. 395, 259–274 (2009), DOI:10.1007/ s00216-009-2844-3. http://dx.doi.org/10.1007/s00216-009-2844-310.1007/s00216-009-2844-3Search in Google Scholar PubMed

[58] H. Schubert and A. Kuznetsov, Detection and disposal of improvised explosives, pp. 7–9, Springer, St. Petersburg, 2005. 10.1007/978-1-4020-4887-6Search in Google Scholar

[59] HITRAN 2008. High-resolution transmission molecular absorption database, http://www.hitran.com (2005). Search in Google Scholar

[60] A.A. Kosterev, F.K. Tittel, D.V. Serebryakov, A.L. Malinovsky, and I.V. Morozov, “Applications of quartz tuning forks in spectroscopic gas sensing”, Rev. Sci. Instrum. 76, 043105 (2005). http://dx.doi.org/10.1063/1.188419610.1063/1.1884196Search in Google Scholar

[61] M. Pedersen and J. McClelland, “Optimized capacitive MEMS microphone for photoacoustic spectroscopy (PAS) applications”, Proc. SPIE 108, 5732 (2005). 10.1117/12.597136Search in Google Scholar

[62] T. Laurila, H. Cattaneo, V. Koskinen, J. Kauppinen, and R. Hernberg, “Diode laser-based photoacoustic spectroscopy with interferometrically-enhanced cantilever detection”, Opt. Express 13, 2453–2458 (2005). http://dx.doi.org/10.1364/OPEX.13.00245310.1364/OPEX.13.002453Search in Google Scholar PubMed

[63] http://www.sciencedaily.com/releases/2008/06/080625153328.htm (2008). Search in Google Scholar

[64] I.A. Nadezhdinskii, Ya. Ponurovskii, and M.V. Spiridonov, Explosives detection by means of nitrogen dioxide trace concentration measurements, 2011. Search in Google Scholar

[65] J.M. Chalmers Mid-infrared spectroscopy. Spectroscopy in process analysis, CRC Press LLC., 117.ISBN1841270407, 1999. Search in Google Scholar

[66] A. O’Keefe and D.A.G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources”, Rev. Sci. Instrum. 59, 2544–2554 (1988). http://dx.doi.org/10.1063/1.113989510.1063/1.1139895Search in Google Scholar

[67] K.W. Busch and M.A. Busch, “Cavity-ringdown spectroscopy, an ultratrace-absorption measurement technique”, ACS Sym. Ser. 720, American Chemical Society, Washington DC (1999). 10.1021/bk-1999-0720Search in Google Scholar

[68] V.L. Kasyutich, C.S.E. Bale, C.E. Canosa-Mas, C. Pfrang, S. Vaughan, and R.P. Wayne, “Cavity-enhanced absorption: detection of nitrogen dioxide and iodine monoxide using a violet laser diode”, Appl. Phys. B76, 691–698 (2003). http://dx.doi.org/10.1007/s00340-003-1153-310.1007/s00340-003-1153-3Search in Google Scholar

[69] J. Wojtas, Detection of optical radiation in NO xoptoelectronic sensors employing cavity enhanced absorption spectroscopy. Chapter in Optoelectronics — Devices and Applications, Intech Publishers, Vienna, ISBN 978953-307-576-1, 147–172, 2011. 10.5772/19201Search in Google Scholar

[70] J. Wojtas, A. Czyzewski, T. Stacewicz, and Z. Bielecki, “Sensitive detection of NO2 with Cavity Enhanced Spectroscopy”, Optica Applicata 36, 461–467 (2006). Search in Google Scholar

[71] Z. Bielecki, T. Stacewicz, J. Wojtas, M. Nowakowski, and J. Mikołajczyk, Polish patent application No P.394439 (2011). Search in Google Scholar

[72] J. Wojtas and Z. Bielecki, “Signal processing system in the cavity enhanced spectroscopy”, Opto-Electron. Rev. 16, 44–51 (2008). http://dx.doi.org/10.2478/s11772-008-0034-z10.2478/s11772-008-0034-zSearch in Google Scholar

[73] J. Wojtas, J. Mikolajczyk, M. Nowakowski, B. Rutecka, R. Medrzycki, and Z. Bielecki, “Appling CEAS method to UV, VIS, and IR spectroscopy sensors”, Bull. Pol. Ac: Tech. 59, (2011). 10.2478/v10175-011-0050-xSearch in Google Scholar

[74] T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikołajczyk, R. Mędrzycki, and B. Rutecka, “Cavity Ring Down Spectroscopy: detection of trace amounts of matter”, Opto-Electron. Rev. 20, 77–90, (2012). http://dx.doi.org/10.2478/s11772-012-0006-110.2478/s11772-012-0006-1Search in Google Scholar

[75] J. Wojtas, R. Medrzycki, B. Rutecka, J. Mikolajczyk, M. Nowakowski, D. Szabra, M. Gutowska, T. Stacewicz, and Z. Bielecki, “NO and N2O detection employing cavity enhanced technique”, Proc. SPIE 8374, 837414 (2012). http://dx.doi.org/10.1117/12.91924010.1117/12.919240Search in Google Scholar

[76] T. Pustelny, E. Maciak, Z. Opilski, and M. Bednorz, “Optical interferometric structures for application in gas sensors”, Optica Applicata 37, 187–194 (2007). Search in Google Scholar

[77] W. Jakubik, M. Urbanczyk, E. Maciak, and T. Pustelny, “Bilayer structures of NiOx and Pd in surface acoustic wave an electrical gas sensor systems”, Acta Physica Polonica A116(3), 315–320 (2009). 10.12693/APhysPolA.116.315Search in Google Scholar

[78] P. Struk, T. Pustelny, K. Golaszewska, E. Kaminska, M. Borysewicz, M. Ekielski, and A. Piotrowska, “Photonic structures with grating couplers based on ZnO”, Opto-Electron. Rev. 19, 462–467 (2011). http://dx.doi.org/10.2478/s11772-011-0046-y10.2478/s11772-011-0046-ySearch in Google Scholar

[79] J. Yinon, Forensic and environmental detection of explosives, edited by John Wiley & Sons, New York, 1999. Search in Google Scholar

Published Online: 2013-3-15
Published in Print: 2013-6-1

© 2013 SEP, Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 3.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11772-013-0082-x/html
Scroll to top button