Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter March 26, 2008

Ambient temperature or moderately cooled semiconductor hot electron bolometer for mm and sub-mm regions

  • V. Dobrovolsky EMAIL logo , F. Sizov , Y. Kamenev and A. Smirnov
From the journal Opto-Electronics Review

Abstract

A model of semiconductor hot electron bolometer (SHEB), in which electromagnetic radiation heats only electrons in narrow-gap semiconductor without its lattice slow-response heating, is considered. Free carrier heating changes the generation-recombination processes that are the reason of semiconductor resistance rise. It is estimated, that Hg0.8Cd0.2Te detector noise equivalent power (NEP) for mm and sub-mm radiation wavelength range can reach NEP ∼10−11 W at Δf = 1 Hz signal gain frequency bandwidth. Measurements performed at electromagnetic wave frequencies v = 36, 39, 55, 75 GHz, and at 0.89 and 1.58 THz too, with non-optimized Hg0.8Cd0.2Te antenna-coupled bolometer prototype confirmed the basic concept of SHEB. The experimental sensitivity Sv ∼2 V/W at T = 300 K and the calculated both Johnson-Nyquist and generation-recombination noise values gave estimation of SHEB NEP ∼3.5 × 10−10 W at the band-width Δf = 1 Hz and v = 36 GHz.

[1] P.H. Siegel, “Terahertz technology”, IEEE T. Microw. Theory 50, 910–928 (2002). http://dx.doi.org/10.1109/22.98997410.1109/22.989974Search in Google Scholar

[2] D. Mittleman, Sensing with Terahertz Radiation, Springer-Verlag, Berlin-Heidelberg-New-York, 2003. 10.1007/978-3-540-45601-8Search in Google Scholar

[3] E.R. Brown, “Fundamentals of terrestrial millimetre-wave and THz remote sensing”, in Terahertz Sensing Technology, Vol. 2, pp. 1–103, edited by D.L. Woolard, W.R. Loerop, and M.S. Shur, World Scientific, New York, 2003. Search in Google Scholar

[4] N. Karpowicz, H. Zhong, J. Xu, K.I. Lin, J. Sh. Hwang, and X.C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging”, Semicond. Sci. Technol. 20, S293–S299 (2005). http://dx.doi.org/10.1088/0268-1242/20/7/02110.1088/0268-1242/20/7/021Search in Google Scholar

[5] J.E. Huffmann, “Infrared detectors for 2 to 220 microns astronomy”, Proc. SPIE 2274, 157–169 (1995). http://dx.doi.org/10.1117/12.18924110.1117/12.189241Search in Google Scholar

[6] J. Grade, P. Haydon, and D. Van der Weide, “Electronic terahertz antennas and probes for spectroscopic detection and diagnostics”, Proc. IEEE 95, 1583–1591 (2007). http://dx.doi.org/10.1109/JPROC.2007.89890010.1109/JPROC.2007.898900Search in Google Scholar

[7] E.R. Brown, A.W.M. Lee, B.S. Navi, and J.E. Bjarnason, “Characterization of a planar self-complimentary square spiral antenna in the THz region”, Microw. Opt. Let. 48, 524–529 (2006). http://dx.doi.org/10.1002/mop.2139810.1002/mop.21398Search in Google Scholar

[8] A. Rogalski, Infrared Detectors, Gordon and Breach Science Publishers, The Netherlands, 2000. 10.1201/9781420022506Search in Google Scholar

[9] A. Skalare, W.R. McGrath, P. Echternach, H.G. LeDuc, I. Siddiqi, A. Verevkin, and D.E. Prober, “Aluminium hotelectron bolometer mixers at submillimeter wavelengths”, IEEE T. Appl. Supercon. 11, 641–644 (2001). http://dx.doi.org/10.1109/77.91942610.1109/77.919426Search in Google Scholar

[10] J.R. Gao, J.N. Hovenie, Z.Q. Yang, J.J.A. Baselmans, A. Baryshev, M. Hajenius, T.M. Klapwijk, A.J.L. Adam, T.O. Klaassen, B.S. Williams, S. Kumar, Q. Hu, and J.L. Reno, “Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer”, Appl. Phys. Lett. 86, 244104-1–244104-3 (2005). 10.1063/1.1949724Search in Google Scholar

[11] P.L. Richards, “Bolometers for infrared and millimeter waves”, J. Appl. Phys. 76, 1–24 (1994). http://dx.doi.org/10.1063/1.35712810.1063/1.357128Search in Google Scholar

[12] P.W. Norton, and M. Kohin, “Technology and application advancements of uncooled imagers”, Proc. SPIE 5783, 524–530 (2005). http://dx.doi.org/10.1117/12.60433410.1117/12.604334Search in Google Scholar

[13] A. Satou, I. Khmirova, V. Ryzhii, and M. Shur, “Plasma and transit-time mechanisms of the terahertz radiation detection in high-electron mobility transistor”, Semicond. Sci. Technol. 18, 460–469 (2003). http://dx.doi.org/10.1088/0268-1242/18/6/31210.1088/0268-1242/18/6/312Search in Google Scholar

[14] R. Tauk, F. Teppe, S. Bounbanga, W. Knap, Y.M. Meziami, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D.K. Maude, S. Rumyantsev, and M.S. Shur, “Plasma wave detection of terahertz radiation by silicon field effects transistors: Responsivity and noise equivalent power”, Appl. Phys. Lett. 89, 253511 (2006). Search in Google Scholar

[15] W. Knap, F. Teppe, A. El Fatimy, N. Dyakonova, S. Boubanga, D. Coquillat, C. Gaquiere, A. Shchepetov, and S. Bollaert, “Room temperature detection and emission of terahertz radiation by plasma oscillations in nanometer size transistors”, Digest of IRMMW-THz-2007 Conf., 998–999 (2007). 10.1109/ICIMW.2007.4516826Search in Google Scholar

[16] V.N. Dobrovolsky and F.F. Sizov, “Room temperature, or moderately cooled, fast THz semiconductor hot electron bolometer”, Semicond. Sci. Technol. 22, 103–106 (2007). http://dx.doi.org/10.1088/0268-1242/22/2/01710.1088/0268-1242/22/2/017Search in Google Scholar

[17] M. Born and E. Wolf, Principles of Optics, Pergamon Press, New-York, 1964. Search in Google Scholar

[18] K. Seeger, Semiconductor Physics, Springer, Wien, 1973. 10.1007/978-3-7091-4111-3Search in Google Scholar

[19] E. Carroll, Hot Electron Microwave Generators, Edward Arnold LTD, London, 1970. Search in Google Scholar

[20] V.V. Vladimirov, Ŕ.F. Volkov, and Ĺ.Z. Meilichov, Plasma of Semiconductors, Atomizdat, Moscow, 1979. (in Russian) Search in Google Scholar

[21] C.T. Elliot and I.L. Spain, “Warm electron effects in narrow-gap HgCdTe alloy at ambient temperature”, J. Phys. C Solid State 7, 727–735 (1974). http://dx.doi.org/10.1088/0022-3719/7/4/01010.1088/0022-3719/7/4/010Search in Google Scholar

[22] Measurements at Millimeter and Submillimeter Waves, edited by R.A. Valitov, and B.I. Makarenko, Radio i Svyaz’, Moscow, 1984. (in Russian) Search in Google Scholar

[23] Yu. E. Kamenev, “Hollow-cathode HCN laser”, Quantum Electron. 29, 269–270 (1999). http://dx.doi.org/10.1070/QE1999v029n03ABEH00146610.1070/QE1999v029n03ABEH001466Search in Google Scholar

[24] E.A. Shaner, M. Lee, M.C. Wanke, A.D. Grine, and J.L. Reno, “Tunable THz detector based on a grating gated field-effect transistor”, Proc. SPIE 6120, 6120-06 (2005). Search in Google Scholar

[25] E.N. Grossman, and A.J. Miller, “Active millimetre-wave imaging for concealed weapons detection”, Proc. SPIE 5077, 62–70 (2003). http://dx.doi.org/10.1117/12.48819810.1117/12.488198Search in Google Scholar

[26] A. Luukanen, and V.P. Viitanen, “Terahertz imaging system based on antenna-coupled microbolometers”, Proc. SPIE 3378, 34–44 (1998). http://dx.doi.org/10.1117/12.31940310.1117/12.319403Search in Google Scholar

Published Online: 2008-3-26
Published in Print: 2008-6-1

© 2008 SEP, Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11772-008-0003-6/html
Scroll to top button