Skip to main content
Log in

Total protein and carbohydrate content and protease and disaccharidase activities in the hemolymph of Lymnaea stagnalis naturally infected with digenean larvae

  • Section Zoology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Lymnaea stagnalis is an intermediate host of many Digenea. The infestation affects host metabolism. The aim of the work was to investigate hemolymph biochemical indicators of L. stagnalis infected with four species of trematodes: Diplostomum pseudospathaceum, Paryphostomum radiatum, Plagiorchis elegans or Opisthioglyphe ranae. The protein profiles and proteinase activity in the hemolymph of sexually mature individuals of Lymnaea stagnalis maintained at 19°C were tested. As the carbohydrates are main substrates for energetic metabolism of the great pond snail their content and disaccharidase activity were also studied. Hemolymph samples were collected during weeks 3 and 4 of rearing. No significant differences in the total protein content between uninfected individuals and snails infected with the first three trematode species were detected. In the snails infected with O. ranae the quantity of total proteins was near twice higher than in those uninfected. A higher share of 70 kDa proteins in infected than in uninfected snails as well as reduction of the low molecular weight fractions of proteins for snails infected with D. pseudospathaceum and P. radiatum were detected. During week 3, carbohydrate content in the infected snails did not differ from that in the controls while during week 4 it was significantly lower in snails infected with P. elegans or O. ranae. The content of the major soluble carbohydrate in the hemolymph - saccharose — changed in a similar way. No activity of trypsin or pepsin in the hemolymph sample was detected while the activity of chymotrypsin was lower in infected snails vs. controls. On the other hand, saccharase and maltase activities were higher in infected than in uninfected snails. The biochemical hemolymph indicators in naturally infected host-snails show some differences depending on the parasite species but they are not sufficiently species-specific to offer the basis for establishing the model unique for a particular parasitosis. Our results from the field did not always coincide with those from the laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitken A. & Learmonth M. 1996. Protein determination by UV absorption, pp. 3–6. In: Walker J.M. (ed.), The Protein Protocols Handbook, Part I, Humana Press Inc., Totowa. 967 pp. ISBN: 0-89603-338-4

    Chapter  Google Scholar 

  • Brendelberger H. 1997. Determination of digestive enzyme kinetics: a new method to define trophic niches in freshwater snails. Oecologia 109(1): 34–40. DOI: 10.1007/s004420050055

    Article  Google Scholar 

  • Conaway C.A., Fried B. & Shrema J. 1995. High performance thin-layer chromatographic analysis of sugars in Helisoma trivolvis (Pennsylvania strain) infected with larval Echinostoma trivolvis and in uninfected H. trivolvis (Pennsylvania and Colorado strains). J. Planar. Chromatogr. Mod. TLC 8: 184–187.

    CAS  Google Scholar 

  • Cheng T.C. & Coopermann J.S. 1964. Studies on host-parasite relationship between larval trematodes and their host. V. The invasion on the reproductive system of Helisoma trivolvis by the sporocysts and cercariae of Glypthelmins pensylvaniensis. Trans. Am. Microscop. Soc. 83(1): 12–23.

    Article  Google Scholar 

  • Cheng T.C. & Lee F.O. 1971. Glucose levels in the mollusk Biomphalaria glabrata infected with Scistosoma mansoni. J. Invertebr. Pathol. 18(3): 395–399. DOI: 10.1016/0022-2011(71)90044-9

    Article  PubMed  CAS  Google Scholar 

  • Dahlqvist A. 1968. Assay of intestinal disaccharidases. Anal. Biochem. 22(1): 99–107. DOI: 10.1016/0003-2697(68)90263-7

    Article  PubMed  CAS  Google Scholar 

  • Dmitryjuk M., Łopieńska-Biernat E. & Farjan M. 2009. The level of sugars and synthesis of trehalose in Ascaris suum tissues. J. Helminthol. 83(3): 237–243. DOI: 10.1017/S0022149X08165178

    Article  PubMed  CAS  Google Scholar 

  • El-Ansary A. 2003. Biochemical and immunological adaptation in schistosome parasitism. Comp. Biochem. Physiol. Part B: Biochem. Molec. Biol. 136B(2): 227–243. DOI: 10.1016/S1096-4959(03)00124-6

    Article  CAS  Google Scholar 

  • Faltýnková A., Našincová V. & Kablásková L. 2008. Larval trematodes (Digenea) of planorbid snails (Gastropoda: Pulmonata) in Central Europe: a survey of species and key to their identification. Syst. Parasitol. 69(3): 155–178. DOI: 10.1007/s11230-007-9127-1

    Article  PubMed  Google Scholar 

  • Geiger R. 1984 Chymotrypsin. pp. 99–109. In: Bergmeyer H.U. (ed.), Methods of Enzymatic Analysis, Vol. V., Enzymes 3: Peptidases, Proteinases and their Inhibitors, 3rd Ed., Verlag Chemie, Weinheim — Deerfield Beach, Florida — Basel, 598 pp. ISBN: 0895732351, 9780895732354

    Google Scholar 

  • Geiger R. & Fritz H. 1984. Trypsin, pp. 119–129. In: Bergmeyer H.U. (ed.), Methods of Enzymatic Analysis, Vol. V, Enzymes 3: Peptidases, Proteinases and their Inhibitors, 3rd Ed., Verlag Chemie, Weinhein - Deerfield Beach, Florida - Basel, 598 pp. ISBN: 0895732351, 9780895732354

    Google Scholar 

  • Gress F.M. & Cheng T.C. 1973. Alterations in total serum proteins and protein fraction in Biomphalaria glabrata parasitized by Schistosoma mansoni. J. Invertebr. Pathol. 22(3): 382–390. DOI: 10.1016/0022-2011(73)90169-9

    Article  PubMed  CAS  Google Scholar 

  • Guttowa A. & Grabiec S. 1984. RNA and total protein in tissues of snails (Lymnaea tomentosa) during invasion of Fasciola hepatica. Bull. Polish Acad. Sci. Biol. Sci. 32: 353–357. ISSN: 0867-1656.

    Google Scholar 

  • Hoek R.M., Li K.W., Minnen J., Lodder J.C. Jong-Brink M., Smit A.B. & Kesteren R.E. 2005. LFRFamides: a novel family of parasitation-induceed -RFamide neuropeptides that inhibit the activity of neuroendocrine cells in Lymnaea stagnalis. J. Neurochem. 92(5): 1073–1080. DOI: 10.1111/j.1471-4159.2004.02927.x

    Article  PubMed  CAS  Google Scholar 

  • Humiczewska M. & Rajski K. 2005. Lipids in the host-parasite system: Digestive gland of Lymnaea tranculata infected with developmental stages of Fasciola hepatica. Acta Parasitol. 50(3): 235–239.

    Google Scholar 

  • Humphries J. 2011. Effects of larval schistosomes on Biomphalaria snails, Chapter 5, pp. 103–125. In: Toledo R. & Fried B. (eds), Biomphalaria Snails and Larval Trematodes, Springer, New York, 244 pp. DOI: 10.1007/978-1-4419-7028-2 5, ISBN: 978-1-4419-7027-5

    Chapter  Google Scholar 

  • Hwang J-H., Lee W-G., Na B-K., Lee H-W., Cho S-H. & Kim T-S. 2009. Identification and characterization of serine protease inhibitor of Paragonimus westermani. Parasitol. Res. 104(3): 495–501. DOI: 10.1007/s00436-008-1219-6

    Article  PubMed  Google Scholar 

  • Jarusiewicz J.A., Shrema J. & Fried B. 2006. Thin layer chromatographic analysis of glucose and maltose in estivated Biomphalaria glabrata snails and those infected Schistosoma mansoni. Comp. Biochem. Physiol. Part B Biochem. Molec. Biol. 145B(3–4): 346–349. DOI: 10.1016/j.cbpb.2006.08.008

    Article  CAS  Google Scholar 

  • Jong-Brink M., Elsaadany M. & Soto M.S. 1991. The occurrence of schistosomin, an antagonist of female gonadotropic hormones, is a general phenomenon in haemolymph of schistosome-infected freshwater snails. Parasitology 103(Pt 3): 371–378. PMID: 1780174

    Article  PubMed  Google Scholar 

  • Jong-Brink M. & Koene J.M. 2005. Parasitic manipulation: going beyond behavior. Behav. Proc. 68(3): 229–233. DOI: 10.1016/j.beproc.2004.08.014

    Article  Google Scholar 

  • Jong-Brink M., Reid C.N., Tensen C.P. & Maat A. 1999. Parasites flicking the NPY gene on the host’s switchboard: why NPY? FASEB J. 13(14): 1972–1984. PMID: 10544180

    PubMed  Google Scholar 

  • Karanova M.V. 2006. Seasonal variation in the content of free reducting sugars in body fluids of freshwater mollusk Lymnaea stagnalis. Biol. Bull. 33(4): 382–386. DOI: 10.1134/S1062359006040091

    Article  CAS  Google Scholar 

  • Kłyszejko-Stefanowicz L. 2003. Ćwiczenia z biochemii. PWN Warszawa, 824 pp. ISBN: 9788301139445

    Google Scholar 

  • Knox D.P. 2007. Proteinase inhibitor and helminth parasite infection. Parasit. Immunol. 29: 57–71. DOI: 10.1111/j.1365-3024.2006.00913.x

    Article  CAS  Google Scholar 

  • Kuzmina V.V. & Ushakova N.V. 2007. Activities of proteinases in invertebrate animals-potential objects of fish nutrition. Effects of temperature, pH, and heavy metals. J. Evol. Biochem. Physiol. 43(5): 483–489. DOI: 10.1134/S0022093007050040

    Article  CAS  Google Scholar 

  • Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 60–685. DOI: 10.1038/227680a0

    Article  Google Scholar 

  • Li K.W. & Geraerts W.P. 1992. Isolation and chemical characterization of novel insulin-related neuropeptide from freshwater snail, Lymnaea stagnalis. Eur. J. Biochem. 205(2): 675–678. DOI: 10.1111/j.1432-1033.1992.tb16828.x

    Article  PubMed  CAS  Google Scholar 

  • Loker E.S. & Hertel L.A. 1987. Alteration in Biomphalaria glabrata plasma induced by infection with digenetic trematode Echinostoma paraensei. J. Parasitol. 73(3): 503–513. DOI: 10.2307/3282128

    Article  PubMed  CAS  Google Scholar 

  • Marsit C.J. Fried B. & Sherma J. 2000. Carbohydrate analysis, by high performance thin layer chromatography, of Cerithidea californica (Gastropoda: Prosobranchia). J. Liquid Chromatogr. Relat. Technol. 23(15): 2413–2417. DOI: 10.1081/JLC-100100498

    Article  CAS  Google Scholar 

  • Mello-Silva C.C., Vilar M.M., Vasconcellos M.C., Phineiro J. & Rodigues M.L.A. 2010. Carbohydrate metabolism alterations in Biomphalaria glabrata infected with Schistosoma mansoni and exposed to Euphorbia splendens var. hislopii latex. Mem. Inst. Oswaldo Cruz 105(4): 492–495. PMID: 20721497

    Article  PubMed  CAS  Google Scholar 

  • Mostafa O.M.S. 2002. The influence of Fasciola gigantica and Schistosoma haematobium infection on Lymnaea natalensis and Bulinus truncatus. I. Electrophoretic analysis of tissue soluble proteins. J. Egypt Ger. Soc. Zool. 38: 93–100.

    Google Scholar 

  • Muller E.E., Fried B. & Sherma J. 1999. High-performance thinlayer chromatographic analysis of sugars in snail-conditioned water and mucus from Biomphalaria glabrata, Helisoma trivolvis, and Lymnaea elodes. J. Chem. Ecol. 25(4): 727–733. DOI: 10.1023/A:1020880330696

    Article  CAS  Google Scholar 

  • Nasincova V. 1992. Vyvojove stadia motolic v nasich vodnich plzich a vyvojove cykly vybranych druhu celedi Omphalometridae a Echinostomatidae. PhD Thesis, UCAV Ceske Budejovice, 268 pp.

    Google Scholar 

  • Niewiadomska K., Valtonen E.T. & Siddall R. 1997. Cercariacae from Lymnaea stagnalis in lake Kuuhankavesi (central Finland). Acta Parasitol. 42(3): 132–137.

    Google Scholar 

  • Pinheiro J., Maldonado A. Jr & Lanfredi R.M. 2009. Physiological changes in Lymnaea columella (Say, 1817) (Mollusca, Gastropoda) in response to Echinostoma paraensei Lie and Basch, 1967 (Trematoda: Echinstomatidae) infection. Parasitol. Res. 106(1): 55–59. DOI: 10.1007/s00436-009-1630-7

    Article  PubMed  CAS  Google Scholar 

  • Pokora Z. 1990. Wybrane aspekty układu pasożyt-żywiciel na przykładzie płucodysznych ślimaków zarażonych przez stadia rozwojowe przywr digenetycznych [Selected aspects of the host-parasite system on the example of pulmonate snails infected by digenean developmental stages]. Przegl. Zool. 34: 7–23.

    Google Scholar 

  • Rupprecht H., Becker W. & Schwanbek A. 1989. Alterations in hemolymph components in Biomphalaria glabrata during long-term infection with Schistosoma mansoni. Parasitol. Res. 75(3): 233–237. DOI: 10.1007/BF00931281

    Article  PubMed  CAS  Google Scholar 

  • Ryle A.P. 1984. Pepsins, gastricisin and their zymogens, pp. 223–238. In: Bergmeyer H.U. (ed.), Methods of Enzymatic Analysis, Vol. V, Enzymes 3: Peptidases, Proteinases and their Inhibitors, 3rd Ed., Verlag Chemie, Weinhein - Deerfield Beach, Florida - Basel, 598 pp. ISBN: 0895732351, 9780895732354

    Google Scholar 

  • Saboor-Yaraghi A.A., Farahnak A. & Eshraghian M.R. 2011. Haemolymph components of infected & none infected Lymnaea stagnalis with Xiphidiocercariae. Iranian J. Parasitol. 6: 86–91.

    Google Scholar 

  • Sluiters J.F. & Geraerts W.P.M. 1984. Effects of elevated haemolymph levels of the female gonadotropic dorsal body hormone on the cercarial production of Trichobilharzia ocellata in Lymnaea stagnalis. Z. Parasitenkd. 70(4): 477–484. DOI: 10.1007/BF00926688

    Article  CAS  Google Scholar 

  • Tunholi V.M., Lustrino D., Tunholi-Alves V.M., Mello-Silva C.C.C., Maldonado A.Jr, Pinheiro J. & Rodrigues M.L.A. 2011. Biochemical profile of Biomphalaria glabrata (Mollusca, Gastropoda) after infection by Echinostoma paraensei (Trematoda: Echinstomatidae). Parasitol. Res. 109(3): 885–891. DOI: 10.1007/s00436-011-2330-7

    Article  PubMed  Google Scholar 

  • Umezurike G.M. 1976. The β-Glucosidase in the gut contents of the snail Achatina achatina. Energy-dependent modification of structure and activity. Biochem. J. 157(2): 381–387. PMID: 9070

    PubMed  CAS  Google Scholar 

  • Veldhuijzen J.P. 1974. Effects of different kinds of food, starvation and restart of feeding on haemolymph-glucose of the pond snail Lymnaea stagnalis. Neth. J. Zool. 25(1): 89–102. DOI: http://dx.doi.org/10.1163/002829675X00146

    Article  Google Scholar 

  • Veldhuijen J.P. & Cuperus R. 1975. Effect of starvation, low temperature and the dorsal body hormone on the in vitro synthesis of galactogen and glycogen in the albumen gland and the mantle of the pond snail Lymnaea stagnalis. Neth. J. Zool. 26(1): 119–135. DOI: http://dx.doi.org/10.1163/002829676X00091

    Article  Google Scholar 

  • Vergote B., Bouchut A., Sautiere P.E., Roger E., Galinier R.M., Rogorn A., Coustau C., Salzet M. & Mitta G. 2005. Characterization of proteins differentially present in the plasma of Biomphalaria glabrata susceptible or resistant to Echinostoma caproni. Int. J. Parasitol. 35(2): 215–224. DOI: 10.1016/j.ijpara.2004.11.006

    Article  PubMed  CAS  Google Scholar 

  • Zelck U.E. 1999. Glycosidase activities in plasma of naive and schistosome-infected Biomphalaria glabrata (Gastropoda). Parasitology 119: 563–568. DOI: 10.1017/S0031182099005028

    Article  PubMed  CAS  Google Scholar 

  • Zelck U.E., Beckerr E. & Bayne C.J. 1995. The plasma proteins of Biomphalaria glabrata in the presence and absence of Schistosoma mansoni. Dev. Com. Immunol. 19(3): 181–194. DOI:10.1016/0145-305X(95)00012-I

    Article  CAS  Google Scholar 

  • Zelck U.E., Trippensee G. & Becker W. 1996. Detection and partial characterization of glycosidases in the hemolymph of Biomphalaria glabrata (Gastropoda). Comp. Biochem. Physiol. Part B: Biochem. Molec. Biol. 114(3): 281–286. DOI: 10.1016/0305-0491(96)00020-X

    Article  Google Scholar 

  • Zotin A.A. 2010. Energeticheskiǐ obmen v individuaľnom razvitii Lymnaea stagnalis (Lymnaeidae, Gastropoda): III. Pozdniǐ postlichinochniǐ ontogenez [Energetic metabolism during individual development of Lymnaea stagnalis (Lymnaeidae, Gastropoda): III. Late postlarval ontogeny]. Izv. Akad. Nauk Ser. Biol. 37(6): 695–703.

    Google Scholar 

  • Żbikowska E. 2006. Interakcje w układzie żywiciel — pasożyt między błotniarkami Lymnaea stagnalis i przywrami z gatunków: Diplostomum pseudospathaceum, Echinoparyphium aconiatum, Plagiorchis elegans. Wydawnictwo Uniwersytetu Mikołaja Kopernika, Toruń, 134 pp. ISBN: 83-231-1971-6

    Google Scholar 

  • Żbikowska E. 2007. Digenea species in chosen populations of freshwater snails in northern and central part of Poland. Wiad. Parazytol. 53(4): 301–308. PMID: 18441876

    PubMed  Google Scholar 

  • Żbikowska E. 2011. One snail — three Digenea species, different strategies in host-parasite interaction. Anim. Biol. 61(1): 1–19. DOI: 10.1163/157075511X554383

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamila Dmochowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dmochowska, K., Kamińska, K., Frączek, R. et al. Total protein and carbohydrate content and protease and disaccharidase activities in the hemolymph of Lymnaea stagnalis naturally infected with digenean larvae. Biologia 68, 278–287 (2013). https://doi.org/10.2478/s11756-013-0153-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-013-0153-y

Key words

Navigation