Skip to main content

Advertisement

Log in

Comparison of dynamic responses of cellular metabolites in Escherichia coli to pulse addition of substrates

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

We conducted an integrated study of cell growth parameters, product formation, and the dynamics of intracellular metabolite concentrations using Escherichia coli with genes knocked out in the glycolytic and oxidative pentose phosphate pathway (PPP) for glucose catabolism. We investigated the same characteristics in the wild-type strain, using acetate or pyruvate as the sole carbon source. Dramatic effects on growth parameters and extracellular and intracellular metabolite concentrations were observed after blocking either glycolytic breakdown of glucose by inactivation of phosphoglucose isomerase (disruption of pgi gene) or pentose phosphate breakdown of glucose by inactivation of glucose-6-phosphate dehydrogenase (disruption of zwf gene). Reducing power (NADPH) was mainly produced through PPP when the pgi gene was knocked out, while NADPH was produced through the tricarboxylic acid (TCA) cycle by isocitrate dehydrogenase or NADP-linked malic enzyme when the zwf gene was knocked out. As expected, when the pgi gene was knocked out, intracellular concentrations of PPP metabolites were high and glycolytic and concentrations of TCA cycle pathway metabolites were low. In the zwf gene knockout, concentrations of PPP metabolites were low and concentrations of intracellular glycolytic and TCA cycle metabolites were high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CER:

CO2 evolution rate

DCW:

dry cell weight

ED:

Entner-Doudoroff

EMP:

Embden-Mayerhof-Paranas

MEZ:

malic enzyme

OD:

optical density

OUR:

oxygen uptake rate

PGI:

phosphoglucose isomerase

PPP:

pentose phosphate pathway

TCA:

tricarboxylic acid

Yx/s :

cell mass yield

6PGDH:

6-phosphogluconate dehydrogenase

Eda:

Entner-Douderoff aldolase

Edd:

Entner-Douderoff dehydralase

Eno:

enolase

Fba:

fructose-1,6-bisphosphate aldolase

G6PDH:

glucose-6-phosphate dehydrogenase

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

GDH:

glutamate dehydrogenase

Hxk:

hexokinase

ICDH:

isocitrate dehydrogenase

LDH:

lactate dehydrogenase

MDH:

malate dehydrogenase

Mk:

myokinase

Pck:

PEP carboxykinase

Pgi:

phosphoglucose isomerase

Ppc:

phosphoenolpyruvate carboxylase

Pta:

phosphotransacetylase

PTS:

phosphotransferase system

Pyk:

pyruvate kinase

Rpe:

ribose-phosphate epimerase

Rpi:

ribose-phosphate isomerase

Tkt:

transketolase

Tpi:

triosephosphate isomerase

Tal:

transaldolase

2PG:

2-phosphoglycerate

6PG:

6-phosphogluconate

AcCoA:

acetyl-coenzyme A

ADP:

adenosine diphosphate

AKG:

α-ketoglutarate

AMP:

adenosine monophosphate

ATP:

adenosine triphosphate

DHAP:

dihydroxyacetone phosphate

E4P:

erythrose-4-phosphate

F6P:

fructose-6-phosphate

FBP:

fructose-1,6-bisphosphate

G6P:

glucose-6-phosphate

GAP:

glyceraldehyde-3-phosphate

ICT:

isocitrate

NAD:

diphosphopyridindinucleotide, oxidized

NADH:

diphosphopyridindinucleotide, reduced

NADP:

diphosphopyridindinucleotide-phosphate, oxidized

NADPH:

diphosphopyridindinucleotide-phosphate, reduced

OAA:

oxaloacetate

PEP:

phosphoenolpyruvate

PYR:

pyruvate

R5P:

ribose-5-phosphate

RU5P:

ribulose-5-phosphate

SUC:

succinate

References

  • Bailey J.E. 1991. Toward a science of metabolic engineering. Science 252: 1668–1675.

    Article  PubMed  CAS  Google Scholar 

  • Bergmeyer H.U. 1984a. Methods of Enzymatic Analysis, 3rd Ed., Vol. 6. Verlag Chemie, Weinheim, Germany.

    Google Scholar 

  • Bergmeyer H.U. 1984b. Methods of Enzymatic Analysis, 3rd Ed., Vol. 7. Verlag Chemie, Weinheim, Germany.

    Google Scholar 

  • Berry A. 1996. Improving production of aromatic compounds in Escherchia coli by metabolic engineering. Trends Biotechnol. 14: 250–256.

    Article  PubMed  CAS  Google Scholar 

  • Buchholz A., Jurlebaus J., Christian W. & Takors R. 2002. Metabolomics: quantification of intracellular metabolite dynamics. Biomol. Eng. 19: 5–15.

    Article  PubMed  CAS  Google Scholar 

  • Buchholz A., Takors R. & Christian W. 2001. Quantification of intracellular metabolites in Escherichia coli using liquid chromatographic-electrospray ionization tandem mass spectrometric techniques. Anal. Biochem. 295: 129–137.

    Article  PubMed  CAS  Google Scholar 

  • Burgard A.P. & Maranas C.D. 2001. Probing the performance limits of the Escherichia coli metabolic network subject to additions or deletions. Biotechnol. Bioeng. 74: 364–375.

    Article  PubMed  CAS  Google Scholar 

  • Canonaco F., Hess T.A., Heri S., Wang T., Szyperski T. & Sauer U. 2001. Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA. FEMS Microbiol. Lett. 204: 247–252.

    Article  PubMed  CAS  Google Scholar 

  • Choi I.Y., Sup K.I., Kim H.J. & Park J.W. 2003. Thermosensitive phenotype of Escherichia coli mutant lacking (NADP(+)-dependent isocitrate dehydrogenase. Redox Rep. 8: 51–56.

    Article  PubMed  CAS  Google Scholar 

  • Datsenko K.A. & Wanner B.L. 2000. One-step inactivation of chromosomal genes in Escherichia coli K12 using PCR products. Proc. Natl. Acad. Sci. USA 97: 6640–6645.

    Article  PubMed  CAS  Google Scholar 

  • Dauner M., Storni T. & Sauer U. 2001. Bacillus subtilis metabolism and energetic in carbon-limited and excesscarbon chemostat culture. J. Bacteriol. 183: 7308–7317.

    Article  PubMed  CAS  Google Scholar 

  • De Koning W. & Van Dam K. 1992. A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal. Biochem. 204: 118–123.

    Article  PubMed  Google Scholar 

  • Emmerling M., Dauner M., Ponti A., Fiaux J., Hochuli M., Szyperski T., Wuthrich K., Bailey J.E. & Sauer U. 2002. Metabolic flux responses to pyruvate kinase knockout in Escherichia coli. J. Bacteriol. 184: 152–164.

    Article  PubMed  CAS  Google Scholar 

  • Choi G.G., Bae M.S., Ahn C.Y. & Oh H.M. 2008. Enhanced biomass and γ-linolenic acid production of mutant strain Arthrospira platensis. J. Microbiol. Biotechnol. 18: 539–544.

    PubMed  CAS  Google Scholar 

  • Goel A.J., Ferrance J., Jeong J. & Attai A. 1993. Analysis of metabolic fluxes in batch and continuous cultures of Bacillus subtilis. Biotechnol. Bioeng. 42: 686–696.

    Article  PubMed  CAS  Google Scholar 

  • Junke H., Krems B., Kotter P. & Entian K.D. 1996. Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress. Mol. Gen. Genet. 252: 456–464.

    Article  Google Scholar 

  • Hoque M.A., Siddiquee K.A.Z. & Shimizu K. 2004. Metabolic control analysis of gene-knockout Escherichia coli based on the inverse flux analysis with experimental verification. Biochem. Eng. J. 19: 53–59.

    Article  CAS  Google Scholar 

  • Hoque M.A., Ushiyama H., Tomita M. & Shimizu K. 2005. Dynamic responses of the intracellular metabolite concentrations of the wild type and pykA Escherichia coli against pulse addition of glucose or NH3 under those limiting continuous cultures. Biochem. Eng. J. 26: 38–49.

    Article  CAS  Google Scholar 

  • Hua Q., Yang C., Baba T., Mori H. & Shimizu K. 2003. Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knock-out. J. Bacteriol. 185: 7053–7067.

    Article  PubMed  CAS  Google Scholar 

  • Hua Q., Yang C., Oshima T., Mori H. & Shimizu K. 2004. Analysis of gene expression in Escherichia coli in response to changes of growth-limiting nutrient in chemostat cultures. Appl. Environ. Microbiol. 70: 2354–2366.

    Article  PubMed  CAS  Google Scholar 

  • Hurlebaus J., Buchholz A., Alt W., Wiechert W. & Takors R. 2002. MMT-A pathway modeling tool for data from rapid sampling experiments. In Silico Biology 2: 467–484.

    PubMed  CAS  Google Scholar 

  • Ishii N., Nakahigashi K., Baba T., Robert M., Soga T., Kanai A., Hirasawa T., Naba M., Hirai K., Hoque A., Ho P.Y., Kakazu Y., Sugawara K., Igarashi S., Harada S., Masuda T., Sugiyama N., Togashi T., Hasegawa M., Takai Y., Yugi K., Arakawa K., Iwata N., Toya Y., Nakayama Y., Nishioka T., Shimizu K., Mori H. & Tomita M. 2007. Multiple highthroughput analyses monitor the tesponse of E. coli to perturbations. Science 316: 593–597.

    Article  PubMed  CAS  Google Scholar 

  • Larsson C.U., von Stokar U., Marison I. & Gustafsson L. 1993. Growth and metabolism of Saccharomyce cerevisiae in chemostat cultures under carbon, nitrogen, or carbon- and nitrogen-limiting conditions. J. Bacteriol. 175: 4809–4816.

    PubMed  CAS  Google Scholar 

  • Lim S.J., Jung Y.M., Shin H.D. & Lee Y.H. 2002. Application of the NADPH-related genes zwf and gnd for the oddball biosynthesis of PHB in an E. coli transformant harboring a cloned phbCAB operon. J. Biosci. Bioeng. 93: 543–549.

    PubMed  CAS  Google Scholar 

  • Lowenstein J.M. 1969. Methods in Enzymology, Vol. XIII, Citric Acid Cycle. Academic Press, New York.

    Google Scholar 

  • Matsudo M.C., Bezerra R.P., Sato S., Perego P., Converti A. & Carvalho J.C.M. 2009. Repeated fed-batch cultivation of Arthrospira (Spirulina) platensis using urea as nitrogen source. Biochem. Eng. J. 43: 52–57.

    Article  CAS  Google Scholar 

  • Park S.J., Cotter P.A. & Gunsalus R.P. 1995. Regulation of malate dehydrogenase (mdh) gene expression in Echerichia coli in response to oxygen, carbon and heme availability. J. Bacteriol. 177: 6652–6656.

    PubMed  CAS  Google Scholar 

  • Ping H., Leighton T., Ishkhanova G. & Kustu S. 1999. Sensing of nitrogen limited by Bacillus subtilis: comparison to enteric bacteria. J. Bacteriol. 181: 5042–5050.

    Google Scholar 

  • Piorreck M., Hinnerk K., Pohl B. & Pohl P. 1984. Biomass production, total protein chlorophylls, lipids and fatty acids of freshwater green and blue green algae under different nitrogen regimes. Phytochemistry 23: 207–216.

    Article  CAS  Google Scholar 

  • Rerenci T. 1999. Regulation by nutrient limitation. Curr. Opin. Microbiol. 2: 208–213.

    Article  Google Scholar 

  • Rizzi M., Baltes M., Theobald U. & Reuss M. 1997. In vivo analysis of metabolic dynamics in Saccharomces cerevisiae: II. Mathematical model. Biotechnol. Bioeng. 55: 592–608.

    Article  CAS  Google Scholar 

  • Sarkar D., Siddiquee K.A.Z., Arauzo-Bravo M.J., Oba T. & Shimizu K. 2008. Effect of cra gene knockout together with edd and iclR genes knockout on the metabolism in Escherichia coli. Arch. Microbiol. 190: 559–571.

    Article  PubMed  CAS  Google Scholar 

  • Sauer U., Lasko D.R., Fiaux J., Hochuli M., Glaser R., Szyperski T., Wuthrich K. & Bailey E.J. 1999. Metabolic flux ratio analysis of genetic environmental modulations of Escherichia coli central carbon metabolism. J. Bacteriol. 181: 6679–6688.

    PubMed  CAS  Google Scholar 

  • Schaefer U., Boos W., Takors R. & Weuster-Botz D. 1999. Automated sampling device for monitoring intracellular metabolite dynamics. Anal. Biochem. 270: 88–96.

    Article  PubMed  CAS  Google Scholar 

  • Senior P.J. 1975. Regulation of nitrogen metabolism in Escherichia coli and Klebsiella aerogenes: studies with the continuous-culture technique. J. Bacteriol. 123: 407–418.

    PubMed  CAS  Google Scholar 

  • Siddiquee K.A.Z., Arauzo-Bravo M.J. & Shimizu K. 2004. Metabolic flux analysis of pykF gene knockout Escherichia coli based on 13C-labeling experiments together with measurements of enzyme activities and intracellular metabolite concentrations. Appl. Microbiol. Biotechnol. 63: 407–417.

    Article  Google Scholar 

  • Stephanopoulos G., Nielsen J. & Aristidou A. 1998. Metabolic Engineering: Principles and Methodologies. Academic Press, London.

    Google Scholar 

  • Tao H., Bausch C., Richmond C., Blatner R.F. & Conway T. 1999. Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media. J. Bacteriol. 181: 6425–6440.

    PubMed  CAS  Google Scholar 

  • Theobald U., Milinger W., Baltes M., Rizzi M. & Reuss M., 1997. In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: I. Experimental observations. Biotechnol. Bioeng. 55: 305–316.

    Article  PubMed  CAS  Google Scholar 

  • Vaseghi S., Baumeister A., Rizzi M. & Reuss M. 1999. In vivo dynamics of the pentose phosphate pathway in Saccharomyces cerevisiae. Metab. Eng. 1: 128–140.

    Article  PubMed  CAS  Google Scholar 

  • Westerhoff H.V. 2001. The silicon cell, not dead but live! Metab. Eng. 3: 207–210.

    CAS  Google Scholar 

  • Weuster-Botz D. & de Graff A.A. 1996. Reaction engineering methods to study intracellular metabolite concentrations. Adv. Biochem. Eng. Biotechnol. 54: 75–108.

    PubMed  CAS  Google Scholar 

  • Yang C., Hua Q., Baba T., Mori T. & Shimizu K., 2003. Analysis of Escherichia coli anaplerotic metabolism and its regulation mechanisms from the metabolic responses to altered dilution rates and phosphoenolpyruvate carboxykinase knockout. Biotechnol. Bioeng. 84: 129–144.

    Article  PubMed  Google Scholar 

  • Zhao J., Baba T., Mori H. & Shimizu K. 2004a. Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13C-labeling experiments and the measurement of enzyme activities. Appl. Microbiol. Biotechnol. 64: 91–98.

    Article  PubMed  CAS  Google Scholar 

  • Zhao J., Baba T., Mori H. & Shimizu K. 2004b. Effect of zwf gene knock-out on the metabolism of Escherichia coli grown on glucose or acetate. Metab. Eng. 6: 164–174.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Aminul Hoque.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoque, M.A., Fard, A.T., Rahman, M. et al. Comparison of dynamic responses of cellular metabolites in Escherichia coli to pulse addition of substrates. Biologia 66, 954–966 (2011). https://doi.org/10.2478/s11756-011-0136-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-011-0136-9

Key words

Navigation