Skip to main content

Advertisement

Log in

Bacterial sucrose isomerases: properties and structural studies

  • Review
  • Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Due to their significant role in food industry, sucrose isomerases are good candidates for rational protein engineering. Hence, specific modifications in order to modify substrate affinity and selectivity, product specificity but also to adapt their catalytic properties to particular industrial process conditions, is interesting. Our work on the structural studies of the sucrose isomerase, MutB, which presents the first structural data available on a trehalulose synthase and the first experimental data on complexed forms of sucrose isomerases represents a significant advance in the understanding of these enzymes. In this review we give an overview of what is known on biochemical properties and structural aspects of different sucrose isomerases in particular those reported from bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aghajari N., Feller G., Gerday C. & Haser R. 1998. Structures of the psychrophilic Alteromonas haloplanctis α-amylase give insights into cold adaptation at a molecular level. Structure 6: 1503–1516.

    Article  PubMed  CAS  Google Scholar 

  • Aroonnual A., Nihira T., Seki T. & Panbangred W. 2007. Role of several key residues in the catalytic activity of sucrose isomerase from Klebsiella pneumoniae NK33-98-8. Enzyme Microb. Technol. 40: 1221–1227.

    Article  CAS  Google Scholar 

  • Banner D.W., Bloomer A.C., Petsko G.A., Phillips D.C., Pogson C.I., Wilson I.A., Corran P.H., Furth A.J., Milman J.D., Offord R.E., Priddle, J. D. & Waley, S. G. 1975. Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5 angstrom resolution using amino acid sequence data. Nature 255: 609–614.

    Article  PubMed  CAS  Google Scholar 

  • Bieniawska Z., Paul Barratt D.H., Garlick A.P., Thole V., Kruger N.J., Martin C., Zrenner R. & Smith A.M. 2007. Analysis of the sucrose synthase gene family in Arabidopsis. Plant. J. 49: 810–828.

    Article  PubMed  CAS  Google Scholar 

  • Birch G.R. & Wu L. 2007. Isomaltulose synthases, polynucleotides encoding them and uses therefor. United States Patent No. 7,250,282.

  • Cardoso J.M.P. & Bolini H.M.A. 2007. Different sweeteners in peach nectar: ideal and equivalent sweetness. Food Res. Int. 40: 1249–1253.

    Article  CAS  Google Scholar 

  • Cheetham P.S. 1984. The extraction and mechanism of a novel isomaltulose-synthesizing enzyme from Erwinia rhapontici. Biochem. J. 220: 213–220.

    PubMed  CAS  Google Scholar 

  • Cheetham P.S.J., Imber C.E. & Isherwood J. 1982. The formation of isomaltulose by immobilized Erwinia rhapontici. Nature 299: 628–631.

    Article  CAS  Google Scholar 

  • Cho M.H., Park S.E., Lim J.K., Kim J.S., Kim J.H., Kwon D.Y. & Park C.S. 2007. Conversion of sucrose into isomaltulose by Enterobacter sp. FMB1, an isomaltulose-producing microorganism isolated from traditional Korean food. Biotechnol. Lett. 29: 453–458.

    Article  PubMed  CAS  Google Scholar 

  • Davies G. & Henrissat B. 1995. Structures and mechanisms of glycosyl hydrolases. Structure 3: 853–859.

    Article  PubMed  CAS  Google Scholar 

  • Goda T., Takase S. & Hosoya N. 1988. Hydrolysis of α-D-glucopyranosyl-1,6-sorbitol and α-D-glucopyranosyl-1,6-mannitol by rat intestinal disaccharidases. J. Nutr. Sci. Vitaminol. 34: 131–140.

    PubMed  CAS  Google Scholar 

  • Hamada S. 2002. Role of sweetners in the etiology and prevention of dental caries. Pure Appl. Chem. 74: 1293–1300.

    Article  CAS  Google Scholar 

  • Henrissat B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280: 309–316.

    PubMed  CAS  Google Scholar 

  • Hertelendy Z.I., Mendenhall C.L., Rouster S.D., Marshall L. & Weesner R. 1993. Biochemical and clinical effects of aspartame in patients with chronic, stable alcoholic liver disease. Am. J. Gastroenterol. 88: 737–743.

    PubMed  CAS  Google Scholar 

  • Jensen M.H., Mirza O., Albenne C., Remaud-Simeon M., Monsan P., Gajhede M. & Skov L.K. 2004. Crystal structure of the covalent intermediate of amylosucrase from Neisseria polysaccharea. Biochemistry 43: 3104–3110.

    Article  PubMed  CAS  Google Scholar 

  • Jonker D., Lina B.A. & Kozianowski G. 2002. 13-Week oral toxicity study with isomaltulose (palatinose) in rats. Food Chem. Toxicol. 40: 1383–1389.

    Article  PubMed  CAS  Google Scholar 

  • Kawai K., Okuda Y. & Yamashita K. 1985. Changes in blood glucose and insulin after an oral palatinose administration in normal subjects. Endocrinol. Jpn. 32: 933–936.

    PubMed  CAS  Google Scholar 

  • Krastanov A., Blazheva D. & Stanchev V. 2007. Sucrose conversion into palatinose with immobilized Serratia plymuthica cells in a hollow-fibre bioreactor. Process Biochem. 42: 1655–1659.

    CAS  Google Scholar 

  • Krastanov A., Blazheva D., Yanakieva I. & Kratchanova M. 2006. Conversion of sucrose into palatinose in a batch and continuous processes by immobilized Serratia plymuthica cells. Enzyme Microb. Technol. 39: 1306–1312.

    Article  CAS  Google Scholar 

  • Krastanov A. & Yoshida T. 2003. Production of palatinose using Serratia plymuthica cells immobilized in chitosan. J. Ind. Microbiol. Biotechnol. 30: 593–598.

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler F.W. & Peters S. 2004. Carbohydrates as green raw materials for the chemical industry. Comptes Rendus Chimie 7: 65–90.

    Article  CAS  Google Scholar 

  • Lina B.A.R., Jonker D. & Kozianowski G. 2002. Isomaltulose (Palatinose®): a review of biological and toxicological studies. Food Chem. Toxicol. 40: 1375–1381.

    Article  PubMed  CAS  Google Scholar 

  • Low N. & Sporns P.E. 1988. Analysis and quantitation of minor di-and trisaccharides in honey, using capillary gas chromatography. J. Food Sci. 53: 558–561.

    Article  CAS  Google Scholar 

  • Mattes R., Klein K., Schiwech H., Kunz M. & Munir M. 1998. DNA’s encoding sucrose isomerase and palatinase. United States Patent No. 5,786,140.

  • Miyata Y., Sugitani T., Tsuyuki K., Ebashi T. & Nakajima N. 1992. Isolation and characterization of Pseudomonas mesoacidophila producing trehalulose. Biosci. Biotechnol. Biochem. 54: 1680–1681.

    Google Scholar 

  • Mosi R., He S., Uitdehaag J., Dijkstra B.W. & Withers S.G. 1997. Trapping and characterization of the reaction intermediate in cyclodextrin glycosyltransferase by use of activated substrates and a mutant enzyme. Biochemistry 36: 9927–9934.

    Article  PubMed  CAS  Google Scholar 

  • Nagai-Miyata J., Tsuyuki K., Sugitani T. Ebashi T. & Nakajima N. 1993. Isolation and characterization of a trehalulose-producing strain of Agrobacterium. Biosci. Biotechnol. Biochem. 53: 2049–2053.

    Google Scholar 

  • Nagai Y., Sugitani T., Kozo Y., Tadashi E & Shiro K. 2003. Practical approach to trehalulose production using a reactor of immobilized cells. J. Japan. Soc. Food Sci. Technol. 50: 488–492.

    CAS  Google Scholar 

  • Nagai Y., Sugitani T. & Tsuyuki K. 1994. Characterization of α-glucosyltransferase from Pseudomonas mesoacidophila MX-45. Biosci. Biotechnol. Biochem. 58: 1789–1793.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima Y. 1984. Palatinose production by immobilized α-glucosyl-transferase. Proc. Res. Soc. Jpn. Sugar Refineries Technol. 33: 54–63.

    Google Scholar 

  • Oslancova A. & Janecek S. 2002. Oligo-1,6-glucosidase and neopullulanase enzyme subfamilies from the α-amylase family defined by the fifth conserved sequence region. Cell. Mol. Life Sci. 59: 1945–1959.

    Article  PubMed  CAS  Google Scholar 

  • Park Y.K., Uekane R.T. & Sato M.H. 1996. Biochemical characterization of a microbial glucosyltransferase that converts sucrose to palatinose. Rev. Microbiol. 27: 1167–1175.

    Google Scholar 

  • Ravaud S., Robert X., Watzlawick H., Haser R., Mattes R. & Aghajari N. 2007. Trehalulose synthase native and carbohydrate complexed structures provide insights into sucrose isomerization. J. Biol. Chem. 282: 28126–28136.

    Article  PubMed  CAS  Google Scholar 

  • Ravaud S., Watzlawick H., Haser R., Mattes R. & Aghajari N. 2005. Expression, purification, crystallization and preliminary X-ray crystallographic studies of the trehalulose synthase MutB from Pseudomonas mesoacidophila MX-45. Acta Cryst. F61: 100–103.

    CAS  Google Scholar 

  • Ravaud S., Watzlawick H., Haser R., Mattes R. & Aghajari N. 2006. Overexpression, purification, crystallization and preliminary diffraction studies of the Protaminobacter rubrum sucrose isomerase SmuA. Acta Cryst. F62: 74–76.

    CAS  Google Scholar 

  • Ravaud S., Watzlawick H., Mattes R., Haser R. & Aghajari N. 2005. Towards the three-dimensional structure of a sucrose isomerase from Pseudomonas mesoacidophila MX-45. Biologia 60(Suppl. 16): 99–105.

    Google Scholar 

  • Renwick A.G. 2006. The intake of intense sweeteners — an update review. Food Addit. Contam. 23: 327–338.

    Article  PubMed  CAS  Google Scholar 

  • Salvucci M.E. 2003. Distinct sucrose isomerases catalyze trehalulose synthesis in whiteflies, Bemisia argentifolii, and Erwinia rhapontici. Comp. Biochem. Physiol. B135: 385–395.

    Google Scholar 

  • Saris W.H. 2003. Sugars, energy metabolism, and body weight control. Am. J. Clin. Nutr. 78: 850S–857S.

    PubMed  CAS  Google Scholar 

  • Schulze M.B., Manson J.E., Ludwig D.S., Colditz G.A., Stampfer M.J., Willett W.C. & Hu F.B. 2004. Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. JAMA 292: 927–934.

    Article  PubMed  CAS  Google Scholar 

  • Sissons C.H., Anderson S.A., Wong L., Coleman M.J. & White D.C. 2007. Microbiota of plaque microcosm biofilms: effect of three times daily sucrose pulses in different simulated oral environments. Caries Res. 41: 413–422.

    Article  PubMed  CAS  Google Scholar 

  • Skov L.K., Mirza O., Henriksen A., De Montalk G.P., Remaud-Simeon M., Sarcabal P., Willemot R.M., Monsan P. & Gajhede M. 2001. Amylosucrase, a glucan-synthesizing enzyme from the α-amylase family. J. Biol. Chem. 276: 25273–25278.

    Article  PubMed  CAS  Google Scholar 

  • Strynadka N.C. & James M.N. 1991. Lysozyme revisited: crystallographic evidence for distortion of an N-acetylmuramic acid residue bound in site D. J. Mol. Biol. 220: 401–424.

    Article  PubMed  CAS  Google Scholar 

  • Takazoe I. 1989. Palatinose — an isomeric alternative to sucrose, pp. 143–167. In: Grenby T.H. (ed.), Progress in Sweeteners, Elsevier, Barking.

    Google Scholar 

  • Veronese T. & Perlot P. 1998. Proposition for the biochemical mechanism occurring in the sucrose isomerase active site. FEBS Lett. 441: 348–352.

    Article  PubMed  CAS  Google Scholar 

  • Veronese T. & Perlot P. 1999. Mechanism of sucrose conversion by the sucrose isomerase of Serratia plymuthica ATCC 15928. Enzyme Microb. Technol. 24: 263–269.

    CAS  Google Scholar 

  • Weiden Hagen R. & Lorenz S. 1957. Ein neues bakterielles Umwandlungsproduktder Saccharose. Angewandte Chemie 69: 641.

    Article  CAS  Google Scholar 

  • Wu L. & Birch R.G. 2005. Characterization of the highly efficient sucrose isomerase from Pantoea dispersa UQ68J and cloning of the sucrose isomerase gene. Appl. Environ. Microbiol. 71: 1581–1590.

    Article  PubMed  CAS  Google Scholar 

  • Yamada K., Shinohara H. & Hosoya N. 1985. Hydrolysis of α-1-0-α-D-glucopyranosyl-d-fructofuranose (trehalulose) by rat intestinal sucrase-isomaltase complex. Nutr. Rep. Int. 32: 1211–1220.

    CAS  Google Scholar 

  • Zhang D., Li N., Lok S.M., Zhang L.H. & Swaminathan K. 2003a. Isomaltulose synthase (Pall) of Klebsiella sp. LX3. Crystal structure and implication of mechanism. J. Biol. Chem. 278: 35428–35434.

    Article  PubMed  CAS  Google Scholar 

  • Zhang D., Li N., Swaminathan K. & Zhang L.H. 2003b. A motif rich in charged residues determines product specificity in isomaltulose synthase. FEBS Lett. 534: 151–155.

    Article  PubMed  CAS  Google Scholar 

  • Zhang D., Li X. & Zhang L.H. 2002. Isomaltulose synthase from Klebsiella sp. strain LX3: gene cloning and characterization and engineering of thermostability. Appl. Environ. Microbiol. 68: 2676–2682.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nushin Aghajari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rhimi, M., Haser, R. & Aghajari, N. Bacterial sucrose isomerases: properties and structural studies. Biologia 63, 1020–1027 (2008). https://doi.org/10.2478/s11756-008-0166-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-008-0166-0

Key words

Navigation